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COURSE INTRODUCTION 

The objectives of this course, thermodynamics and statistical physics in undergraduate 

programs are tailored to provide students with a solid foundation in these fundamental areas of 

physics. These objectives aim to develop both theoretical understanding and practical skills that 

are essential for further study and professional work in physics, engineering, and related fields. 

The course syllabus is divided in to 13 different units.  

Introduce the basic concepts of thermodynamics, including systems, states, processes, and the 

zeroth, first, second, and third laws of thermodynamics.Familiarize students with the properties 

of substances, such as temperature, pressure, volume, entropy, enthalpy, and Gibbs free energy, 

and how to measure and calculate these properties.Study phase transitions and phase diagrams, 

including the critical point and triple point, and understand the behavior of substances during 

phase changes.Apply thermodynamic principles to real-world systems such as engines, 

refrigerators, and heat pumps, and understand the efficiency and limitations of these 

systems.Introduce the concepts of microstates and macrostates, and explain how macroscopic 

properties emerge from microscopic behavior.Teach the principles of probability and statistics 

as they apply to physical systems, including the use of probability distributions. Explain the 

different types of statistical ensembles (microcanonical, canonical, and grand canonical) and 

their use in describing systems in thermodynamic equilibrium. We hope you enjoy the course. 

COURSE OUTCOMES 

After the completion of the course, the students will be able to: 

1. Understand the role of internal energy, enthalpy, temperature, pressure, andspecific 

volume thermodynamic properties. 

2. Elucidate the basics of Carnot cycle, statistics and distributions. 

3. Explain the fundamental differences between classical and quantum statistics andlearn 

about quantum statistical distribution laws. 

4. Analyze important examples of ideal Bose systems and Fermi systems. 

5. Compare the Thermodynamic functions of a completely and strongly DegenerateFermi 

Gas, Fermi Energy. 

6. Draw the Clausius Clapeyron Equation and Herrin Festa equations. 
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The material we have used is purely for educational purposes. Every effort has been made to 

trace the copyright holders of materials reproduced in the book. The editors apologize for any 

violation that may have happened, and they will be happy to rectify any such material in later 
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Chapter 1 

Introduction of Thermodynamics 

1.1. Introduction 

At the outset it is imperative to know about the course title- The Thermodynamics. A branch 

of physics known as thermodynamics studies a system's work and energy. It all began in the 

1800s when scientists learned how to build and run steam engines. 

 

The atomic composition of matter, including its structure and other details, is not taken into 

consideration by thermodynamics. However, it only addresses the system's large-scale 

response, which is observable and quantifiable by experiment. The kinetic theory of gases 

explains interactions among molecules at small scales. The two methods work well together; 

some ideas are better understood in terms of thermodynamics, whereas kinetic theory gives 

more detail for certain ideas. 

 

Thermodynamics is a perfect mathematical science describing the inter- relationship between 

heat and any other form of energy viz., electrical, mechanical, chemical, magnetic etc. The 

basic concept is the transformation of heat into mechanical work through any bulk material. 

Thermodynamics has innumerable applications in physics, chemistry & engineering sciences. 

While studying thermodynamics, you will learn about some basic terms like temperature, 

thermodynamic system, internal energy, thermal equilibrium and about certain 

thermodynamic processes such as isothermal and adiabatic processes etc. You will also know 

here about the concept of a system and its surroundings. In our day to day life we often come 

across the examples of isothermal and adiabatic processes. The melting of ice at zero degree 

centigrade temperature and that of sudden burst of a tyre are the practical examples of 

isothermal and adiabatic processes respectively. The understanding of the different 

thermodynamic process will help you to know the physics behind many such practical 

examples. There are three principal laws of thermodynamics besides the one called the zeroth 

law. The explanation of thermodynamic properties that helps in understanding and 

forecasting a physical system’s behaviour follows from each law.  

 

 

1.2. System and Surroundings 

A defined quantity of substance (like solid, liquid, or gas) surrounded by a closed surface is 



2  

commonly referred to as a system. A system's most basic form is a gas within a cylindrical 

container with a moving piston. that can be heated by a burner. Here the system is the gas 

and the surroundings are piston and burner. When a system is completely uniform throughout 

such as a gas, mixture of gases, pure solid, a liquid or a solution you will say it is 

homogeneous system, but when it consists of two or more phases which are separated from 

one another by definite boundary surface it is said to be heterogeneous system e.g., a liquid 

and its vapor, two immiscible or partially miscible liquids. Anything which is outside this 

system and can exchange energy with it and has a direct bearing on its behaviors called its 

surrounding. The complete system and its surrounding together is called universe. 

 

 

 

 

 

 

Figure 1.1 

Further you can distinguish the system in three classes as discussed in the next article.  

The surface that separates the system from the surrounding area is called a boundary or wall. 

Interactions among the system and the surroundings may or may not be allowed by this wall 

or boundary. 

 

1.3. Thermodynamic System 

Four observable properties determine a system's thermodynamic state. Which are pressure 

(P), volume (V), and temperature (T) are these features. The systems can be classified into 

different groups according to the nature of their boundaries: 

 Open System: An open system is one that is able to exchange matter and energy with 

its surroundings. An example of such a system is an air compressor, wherein air 

enters the system at low pressure and exits at high pressure, exchanging energy as 

well as matter with the surroundings. 

 Close system: A closed system is one that can only exchange energy, not matter, with 

its surroundings. For example, heated gas inside a cylinder causes the piston to 

expand and move outward. The system's boundaries changes, but the matter (gas) 

within it doesn't. 
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 Isolated system: It is a thermally isolated system, so no exchange of heat or works 

permits with the surrounding. e.g., a beverages or any other liquid contained in a 

thermos flask. 

 

1.4. Macroscopic and Microscopic System  

The behavior of the system can be described in two different ways namely macroscopic and 

microscopic. Macroscopic properties can usually be directly experienced by our senses. 

These properties describe the gross characteristics of the system and can directly be measured 

in the laboratory. Macroscopic properties are not concerned with the structure of the system 

(chemical composition). Pressure, temperature, volume, internal energy, entropy etc. are few 

examples of these properties. A macroscopic system is one whose state can completely be 

described in terms of its macroscopic properties or coordinates. 

 

Microscopic properties cannot be directly experienced by our sense of perception. These 

properties describe the internal structure (atoms & molecules) of the system and cannot be 

measured directly in the laboratory. 

 

In fact the macroscopic & microscopic properties are simply the different ways of describing 

the same system so they are related to each other e.g., the pressure of a gas is related to the 

average rate of change of momentum due to all the molecular collisions taking place on a unit 

area. Higher is the rate of change of momentum, higher will be the pressure. Here the 

pressure is a macroscopic property, whereas the rate of change of momentum due to 

molecular collisions is a microscopic property. Similarly the temperature of a gas 

(macroscopic property) is related to the average kinetic energy of translational motion of its 

molecules which is microscopic. 

 

1.5. Concept of Temperature and Heat 

A body's temperature is an indicator of how hot or cold it is. In fact we distinguish hot bodies 

or cold bodies by our sense of touch. That is by touching we can roughly distinguish between 

a hot and a cold body. 

Let us consider two bodies A and B kept in contact such that A is at higher temperature. 

After some time they both acquire the same temperature which is approximately in between 

the two temperatures. It means there is something which has been transferred from A to B. 

This something is called Heat. Thus heat is that physical entity which is transferred from one 
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body to other because of a temperature difference between them. In reality, because of the 

temperature difference between two bodies, heat is a kind of energy that is exchanged 

between them. 

 

We can explain it with a simple example of water level. If two vessels are filled with water 

up to the levels of different height and are inter connected, the water will always flow from 

the higher level to the lower level side. In the same way, when two bodies come into touch, 

heat flows from hot to cold.  

 

There is a distinction between temperature of a body and the heat that it contains. In fact the 

heat that a body contains depends upon its mass as well as upon its temperature. For example 

the sparks from a blacksmith's hammer are white hot (at very high temperature) but they do 

not burn the hand since their mass is very small, therefore contain little heat. On the other 

hand a jug of hot water (at a much lower temperature than the spark) causes a severe burn 

because it contains more heat. 

 

Hence, the flow of heat depends only on the temperature difference but the quantity of heat 

flown does not depend only on temperature difference but also depends on mass and specific 

heat of the body. For example, if a hot body and a cold body are put in mutual contact, heat 

flows from hot to a cold body until they attain a common temperature. It means the 

temperature of a hot body falls and that of cold body rises. But these temperature- changes 

are not necessarily equal because the masses (and also the specific heats) of the two bodies 

may be different.  

 

1.6. Concept of Thermodynamic Equilibrium 

In general, a system is considered to be in equilibrium when its attributes or state variables 

do not vary considerably with time over the interval of interest, that is, observation time. 

Thermal equilibrium is reached, if any two of the three variables—P, V, and T—remain 

steady over time in a homogeneous system as long as the external conditions don't change.  

Different thermodynamical equilibrium take place, which are: 

 

 

Mechanical Equilibrium: A system must be in mechanical equilibrium if there is no 

macroscopic movement within it (i.e., no imbalance pressures at work), nor should there be 
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any change between it and its surroundings or with another system.  

Thermal Equilibrium: This occurs when there's no exchange of heat among two systems that 

are in thermal contact with one another or with their surroundings. This is attained when the 

two systems or one system and its surrounding area are at the same temperature. 

Chemical Equilibrium : A system must not undergo any chemical changes or allow any 

chemical constituents transfer from one area of the system to others. In other words, both the 

system's internal structure and chemical composition must remain unchanged for the system 

to be in a state of chemical equilibrium. 

 

1.7. Zeroth Law of Thermodynamics 

Let us analyse a situation in which two systems are separated by a diathermic (good 

conductor of heat) and adiabatic (bad conductor of heat) walls. Now Let us consider the 

systems A, B, C in which A and B are isolated from each other through an adiabatic wall and 

both are in contact with C through diathermic wall as is shown in fig.1.3. As time passes A 

and B will separately attain equilibrium with C. Now if the diathermic and adiabatic walls are 

interchanged, no further change in states of any of the three systems will occur.  

 

 

Figure 1.2 

This indicates that system A and B themselves are in thermal equilibrium before the walls 

are interchanged. This experimental observation was first developed by R.H Fowler in 1931 

and was named as Zeroth law of thermodynamics which can be stated as follows:  

“If two systems are separately in thermal equilibrium with a third one, then they themselves 

are in thermal equilibrium with each other.”  

This law in a more general form, can be expressed as: 

“If a system A is in thermal equilibrium with each of the several other systems B,C,D,E etc., 

separately then any pair among B,C,D,E etc., will be in mutual thermal equilibrium i.e., D 
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and C or B and D or B and C are always in equilibrium.” 

 

1.8. Concept of Temperature  

Zeroth law permits us to assert that all systems in thermal equilibrium with each other have a 

common property. We call this common property as temperature. A feature of a system that 

determines the degree to which it is in a thermal equilibrium with other systems is its 

temperature. Equal temperatures imply thermal equilibrium; unequal temperatures imply its 

absence. Thus the zeroth law gives the concept of temperature. 

  

Let us analyse the concept of temperature in mathematical terms. Let two systems A and B 

with coordinates (xA, yA) and (xB, yB) respectively, be in equilibrium as shown in Fig.1.3 (b). 

Now if we remove A from contact of B and change its state so that the new variables become 

(xA', yA') and again make contact with B to find that A is still in equilibrium with B, zeroth 

law tells us that the two states of A viz., (xA, yA) and (xA', yA') are in equilibrium. 

 

 

Fig 1.3 

In this way we can find a number of states of A as (xA, yA), (xA', yA'), (xA”, yA”) etc., all of 

which are in thermal equilibrium with the same state (xB, yB) of B so that all these states of 

A are in thermal equilibrium with each other and thus, have the same temperature. Now if all 

these states of A are plotted on a x – y graph they will form a curve as shown in Fig. 1.4, the 

locus of all those points which represent states at same temperature is called an isotherm. All 

the points on an isotherm represent states in equilibrium with each other. A similar 

isotherm of B, all points of which are in thermal equilibrium with any of the states of 

isotherm A will be called a corresponding isotherm. A process in which all thermodynamic 

coordinates but the temperature are changed is called an isothermal process i.e., in an 

isothermal process the pressure or volume of the system may change but the temperature of 
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the system does not change. 

 

Let us now give the mathematical presentation of the concept of temperature. Suppose two 

systems A and B are in thermal equilibrium. At equilibrium both the systems assume fixed 

coordinates. Any change in the state of one system will change the state of the second in a 

restricted way. Hence equations of constraint for the two systems A and B in thermal 

equilibrium is based on the fact that coordinates of the one depend upon those of the other 

and thus is written in a combined way as: 

ƒAB (xA, yA, xB,yB) = 0            (1) 

Similarly, when A is in thermal equilibrium with B and C separately, we may write 

ƒAB (xA, yA, xB, yB) = 0 and          (2) 

ƒAC (xA, yA, xC, yC) = 0          (3) 

Functions ƒAB and ƒAC may be quite different from each other. However, from both these 

equations the common value of xA can be obtained as. 

xA = ƒ''AB (yA, xB, yB) and xA = ƒ''AC (yA, xC, yC) 

which give 

ƒ''AB (yA, xA, yA) – ƒ'AC (yA, xC, yC) = 0        (4) 

But, from zeroth law, B and C should be in equilibrium. Thus we must have 

ƒBC (xB, yB, xC,yC) = 0           (5) 

Equation (4) and (5) represent the same equilibrium conditions and thus they must agree with 

each other. Comparing with eq. (5) we must therefore, drop the variable yA from eq. (4). (In a 

physical example the co-ordinate yA will cancel out from two sides of equation). Thus eq. (4) 

takes the form  

ƒ''AB (xB, yB) – ƒ’AC (xC, yC) = 0 or 

ƒ''B (xB, yB) = ƒ''C (xC, yC) = T (say)         (6) 

subscripts A are also dropped as ƒ'' are functions of B and C only. Eqs. (5) and (6) show that 

if B and C are in equilibrium, there exists a function ƒ'' of the variables x and y for each one, 

having a common value T and we may write that for any system A in equilibrium with a 

reference system 

ƒ' (x, y) = T           (7) 

This common value T of all these functions is the empirical temperature. The next step is to 

define the difference of temperatures. Suppose that a contact between systems A and B 

produces a net energy transfer from A to B. In that instance, it will be claimed that A's 

starting state temperature was higher than B's. Thus, the order of temperature may be given 
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by this definition. However, it does not give a scale of temperature which may enable us to 

define some unit for temperature by which different temperatures may be measured. 

Developing a proper scale of the temperature measurements is out of scope of the present 

unit. For further description on temperature measurements you may consult the book 

mentioned at serial number three in the list of suggested reading given in the last section of 

the unit. 

Self-Assessment  

1. Explain the term ‘heat and temperature'. 

2. Distinguish between isothermal and adiabatic process. 

3. To represent isothermal and adiabatic process, draw P-V diagram. 

4. “For a non-isolated system internal energy is zero” verify the statement. 

5. The primary significance of the Zeroth Law of Thermodynamics?  

a) It defines the concept of temperature. 

b) It establishes the concept of entropy. 

c) It relates the work done by a system to the heat added to it. 

d) It introduces the concept of internal energy. 

6. According to the Zeroth Law of Thermodynamics, which of the following is true?  

a) All systems in thermal equilibrium have the same internal energy. 

b) Thermal equilibrium is not transitive. 

c) Temperature is a transitive property. 

d) All systems in thermal equilibrium have the same pressure. 

7. The Zeroth Law of Thermodynamics is essential for the construction of which of the 

following instruments?  

a) Barometer 

b) Thermometer 

c) Hygrometer 

d) Manometer 

8. If system A is in thermal equilibrium with system B, and system B is in thermal 

equilibrium with system C, what can be said about systems A and C?  

a) A is not in equilibrium with C. 

b) A is in thermal equilibrium with C. 

c) A and C have the same internal energy. 

d) A and C have the same pressure. 
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9. Which of the following is an example of the Zeroth Law of Thermodynamics in 

action?  

a) Heating a pot of water on a stove until it boils. 

b) Mixing hot and cold water until a uniform temperature is achieved. 

c) Using a thermometer to measure the temperature of a substance. 

d) Compressing a gas in a piston. 

10. What does the Zeroth Law of Thermodynamics imply about the nature of 

temperature?  

a) Total energy of the system is represented by temperature. 

b) Temperature is a property that can be transferred between systems. 

c) Temperature is a fundamental and measurable property that determines thermal 

equilibrium. 

d) Temperature is only relevant in systems with a net heat transfer. 

Answers: 

1. c) , a) ,c) ,b) ,b) ,c) ,c)  
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Chapter 2 

First Law of Thermodynamics and its Application 

 

2.1. Extensive and intensive Thermodynamic Variables 

An intensive property is a bulk property, which means that it is a system's physical 

characteristic independent of the system's material's volume or the amount. Temperature, 

pressure, density, viscosity, hardness, refractive index, specific volume, emf, and so on are a 

few examples of intensive properties. 

 

A physical quantity whose magnitude is cumulative through the system is called an 

extensive property. An additive property like this has a value that is proportionate to the 

system's size or mass content. Length, area, volume, mass, internal energy, entropy, electric 

charge, heat capacity, magnetization, and other properties are examples of 

extensive properties. 

 

One such example of an intensive property is the ratio of two extensive properties of the 

same object or system. Density (M/V) or specific volume (V/M) is an example of an 

intensive variable. It is the ratio of an object's mass and volume, which are two extensive 

attributes. 

 

2.2. Equation of State 

It is an equation connect the physical variable to represent the state of the system. Stated 

differently, the established relationship among the properties or variables of thermodynamics 

is the equation of state. This equation explains a mathematical connection between two or 

more state functions of matter, such as its temperature, pressure, volume, and internal energy. 

With the above description of equation of state the Boyle's laws, Charles' law etc are all 

regarded as examples of equation of state. Some of the EOS are :  

 

a. Ideal Gas Equation 

For an ideal gas PV = nRT        (1) 

where P,V and R are pressure, volume and universal gas constant (R=8.314 JK-1mol-1), T 

defines the temperature in Kelvin, and n is the number of moles of the gas. 
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b. Vander-Waals Gas Equation 

The EOS for real gases, can be expressed by van der Waals Equation which is  

 

a and b are constants for a real gas.  

There are many more equations of state that you may come across besides these two given 

above. 

 

2.3. Thermodynamic Process 

Any change in energy that takes place within a system—typically related to changes in 

pressure, volume, internal energy, temperature, or heat transfer—is said as a thermodynamic 

process. 

In thermodynamics, there are several different kinds of processes which frequently occur 

(and in practical contexts). Each of them can be identified by a unique feature that allows to 

explain the energy and work changes related to the process. The descriptions of some of the 

important thermodynamic processes explained below.  

 Adiabatic process Heat transport neither into nor out of the system occurs in this 

thermodynamic process. The quantity of heat does not alter for this process.i.e., 

during this process ∆Q = 0 

 Isochoric process In this thermodynamic process system’s volume remains constant. 

This indicates that the no operation done on the system or by the system during this 

process.  i.e., during this process ∆V =0 

 Isobaric process In this process system’s pressure remains constant. i.e., during this 

process ∆P=0 

 Isothermal process In this process system’s temperature remains constant. An 

excellent example would be if, during a process, there is a change in volume and 

pressure but no change in temperature or heat transfer. i.e., ∆T =0 during this 

procedure 

 Cyclic processes These are a set of processes that bring the system to its initial state 

after certain heat-and-work exchange. For a cyclic process change in internal energy 

∆U=0, and if this is put into the first law of thermodynamics which states ∆U =∆Q-

∆W, then for cyclic process Q =W.  This suggests that the system's stored internal 

energy remains constant, but the net work done through this process must precisely 



12  

correspond to the total amount of energy transferred as heat. 

 Reversible process Reversible processes are those whose direction can be changed 

with a very little adjustment to some of the system's properties. 

 Irreversible process A process is considered to be irreversible, if even a minute 

alteration to any one of its features prohibits it from going in the opposite direction. 

 Quasi-static process This procedure is designed to keep the system as close to an 

equilibrium condition as possible at all times or to be nearly static. Therefore, a series 

of states of equilibrium are closely represented by a quasi-static process. A quasi-

static process is one that operates at an exceptionally sluggish speed. 

 Non-quasi-static process The process is run in a way that ensures the system 

deviates from the state of equilibrium by only a certain amount at each instant. Fast 

operations tend to be non-quasistatic in nature. 

 

2.4. Details of Quasi-static, Isothermal, Adiabatic Process 

Quasi-static Process  

The system may go through non-equilibrium stages as a result of a finite imbalanced force. A 

quasistatic process is one in which there is very little departure from thermodynamic 

equilibrium and every state that the system goes through can be viewed as a state of 

equilibrium. An ideal concept that is never strictly realized in reality is a quasistatic process. 

But in reality, a lot of processes resemble quasistatic processes with negligible error. 

 

Isothermal Process 

An isothermal process happens when a thermodynamic system goes through a process while 

keeping a constant temperature. 

A completely conduction chamber is a requirement for an isothermal process, indicating that 

any heat generated or absorbed during the process must instantly exit the chamber or enter it 

from the outside. In this way the temperature will remain constant. But in practice we do not 

find a perfect conductor. Therefore, a perfect isothermal process cannot be obtained. 

 

We can, however, obtain approximate isothermal process if the process is extremely slow. 

For example if a gas filled in a brass cylinder(good conductor of heat) is compressed very 

slowly with the help of a piston. The heat produced through compression has plenty of time 

to pass through the cylinder's walls and exit outside. As result, the temperature of the gas 
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stays constant, indicating that it changes by zero throughout the process (∆T = 0).  Similarly 

if the gas is slowly expanded it loses energy in doing work against the piston but an equal 

amount of heat comes in from outside. Again the temperature remains constant. 

 

Fig 1.4 

Graphically Isothermal Process can be represented by the curve as shown in Fig.1.5 

An isothermal process is one in which the temperature stays constant during the process and 

the system is perfectly conducive to the surrounding. Consider a working substance with a 

volume given by point A in figure 1.4, at a specific temperature and pressure. The gas is now 

expanding and approaching point B on the curve in terms of volume. 

The working substance has a drop in temperature and loses internal energy as a consequence 

of the decreased pressure. But the system is perfectly appropriate for the environment 

because it draws heat from it and keeps the temperature constant. 

Thus, the temperature remains unchanged from i to ƒ. An isothermal curve is denoted by 

curve i..̒ When the system goes from ƒ to i, it transfers more heat to the surrounding air while 

maintaining the same temperature.  

Since the working substance can absorb and emit heat, the substance's temperature remains 

constant during the isothermal process. An isothermal process equation is 

PV = constant  (1) 

For an ideal gas undergoing isothermal process the change in internal is zero, i.e., 

(U2 – U1) = 0  (2) 

Adiabatic Process 

Adiabatic processes are those in which a thermodynamic system goes through an process 

without any heat being transferred into or out of the system.  

An entirely insulated system is necessary for such a procedure to take place.  

But such a system is not possible and hence a perfect adiabatic change is impossible.  
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Fig. 1.5 

We can however obtain approximate adiabatic process in a way that if the process is 

extremely rapid so that there is very little time for the heat to escape as it is suddenly 

compressed. The heat produced due to compression is added to its internal energy and its 

temperature rises. That is why the bicycle pump is heated when the air in it is suddenly 

compressed. Conversely if a gas is suddenly expanded the external work done by it is drawn 

from its internal energy and its temperature falls. A car's tire explodes due to the adiabatic, 

sudden expansion of air into the atmosphere, which cools the tire. 

Other examples of adiabatic process are the expansion of steam in the cylinder of a steam 

engine and the compression of air in a diesel engine. The compression is so rapid that the 

behavior of the air is adiabatic. 

Graphically adiabatic process can be represented as shown in Fig.1.5. 

Provided that you know that an adiabatic procedure occurs when a system moves from an 

initial state (i) to a final state (̒f) without heat entering or leaving the system, So that  

∆Q = 0 

Thus when a system expands adiabatically then W (work done) is positive and its internal 

energy decreases eq.(1), W is in minus if system compresses adiabatically. Thus in case of 

compression, internal energy increases eq.(2). 

U2− U1 = -W 1 

U2− U1 = - (-W) = W 2 

The equation of adiabatic process is 

P 𝑉𝛾 = constant 3 

where 𝛾 = Cp/ Cv.   

   

2.5. First Law of Thermodynamics 

First law of thermodynamics which places work and heat as the only way, the internal energy 

of a system of a body can be altered. It is a variant of the law of conservation of energy, 
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which states that an isolated system's total energy never changes. However, a perfectly 

isolated system does not exist in practice. All systems exchange energy with their 

surroundings through one or other process no matter how well insulated they are. For 

example, hot tea or water in a thermos flask will only stay hot for a few hours and will reach 

to room temperature with the passage of time. 

The conservation of energy concept used in a thermodynamic system is known as the first 

law of thermodynamics. Following is a description of this law: 

If a quantity of heat dQ is supplied to a body, then in general it is used in three ways. 

 Partially, it is used in raising the temperature of the body i.e., increasing its 

internal kinetic energy dUK. 

 Partially, it is used in doing internal work against molecular attraction, i.e., 

increasing the internal potential energy dUp. 

 And rest is used in expanding the body against the external pressure i.e., in doing 

external work dW. 

So, above statement can be written as, 

dQ = dUK + dUP + dW     1 

This is the differential form of the first law of thermodynamics. 

But, 

dUK + dUP = dU (where dU is the increase in total internal energy of the body) 

∴ dQ = dU + dW or 2 

∆ Q = ∆𝑈 + ∆W 3 

Therefore, amount of heat supplied to the system is divided in two parts which is external 

work done and increase in its internal energy. In equation (3) we should note that, 

Equation (2) represents the differential form whereas eq. (3) stands for change in 

respective quantities. 

1. ∆𝑄, ∆U and ∆W are to be measured in the same unit i.e., all the three either in 

joules or in calories. 

2. If the heat is absorbed by the system ∆𝑄 is positive and negative if rejected by 

the system. Similarly, ∆W is positive if work is done by the system and negative if 

work is done on the system. 

a. Important features of first law of thermodynamics 

The mathematical form of the first law contains three important features: 

1. Heat is a form of energy. 
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2. Energy is conserved in a thermodynamic system process. 

3. Every thermodynamic system in equilibrium state possesses internal energy and this 

internal energy is a function of its state i.e. temperature only. 

 

2.6. Specific Capacity of Solids 

A substance's specific heat capacity is the amount of heat it can hold per unit mass for each 

unit increase in temperature.  

          (1) 

The specific heat capacity C is given by the equation if a mass m of the substance absorbs an 

amount of heat ∆Q and its temperature rises by ∆T. 

The same is true when temperature is lowered by taking heat from the substance. This 

definition applies to any form of the substance, solid, liquid or gas. In terms of mathematics, 

specific heat means the amount of heat required to increase the temperature by 1 degree for a 

substance of unit mass.. For pure water 1 calorie heat is required to raie its temperature by 

1oC 

Thus, Sp. heat capacity of water   =  1 cal/gmC 

= 1 kilo cal/kgC 

=  4.18 × 103 joule / kgC  (m 1 cal = 4.18 J) 

This definition is sufficient for solids and liquids. Since gases can be compressed, a gas's 

specific heat can vary from zero to infinity. For example, if a gas is compressed, it increases 

temperature without absorbing any heat (Q = 0). Thus, specific heat 

           (2) 

On the contrary, gas is allowed to expand freely, without any increase in temperature (i. e. , 

when ∆T = 0) then 

          (3) 

Hence the specific heat of a gas is defined by considering any of the two (pressure or volume) 

as constant. Thus, a gas has two specific heats.  

1.  Cp, or specific heat at a constant pressure, is the quantity of heat required to increase 

a gas's temperature by one degree Celsius for every unit mass while retaining a 

constant pressure.  

It is expressed as         (4) 



17  

2. The specific heat at constant volume, or Cv, is the amount of heat needed to raise a 

gas's unit mass temperature by one degree Celsius while maintaining a constant 

volume.  

It is represented as:        (5) 

Cp is always greater than Cv. Let us see how?. 

Heat capacity of a gas is different under these two conditions. Suppose the heat is supplied to 

a gas and is allowed to expand at constant pressure. Then the supplied heat is used up in 

doing two things: 

It does two different things: (i) it raises the gas's temperature, or internal energy; and (ii) it 

extends the gas against external pressure.  

∆𝑄 = ∆𝑈 + ∆W or ∆ Q  = ∆𝑈 + 𝑝𝑑𝑉       (6) 

However, whenever gas is heated at constant volume, all of the heat provided is utilized to 

raise its temperature without any work taking place (∆W = P∆V= 0). As a consequence, at 

constant pressure, more heat is required to increase the gas's temperature by 1°C than at 

constant volume.  Hence Cp is always greater than the Cv or Cp > Cv. 

 

2.7. Mayer’s Law 

Let us consider one gram-molecule (mole) of an ideal gas at pressure p, Kelvin temperature T 

and volume V. Let CV and Cp be the molecular specific heats at constant volume and at 

constant pressure respectively. 

Let the gas be heated at constant volume so that its temperature is raised by an infinitesimal 

amount dT. The heat supplied will be Cv dT. As the volume remains constant, the external 

work done is zero. The differential form of the first law of thermodynamics is written as 

equation (2.2) 

dQ = dU + dW, 

where dQ is the heat supplied, dU the increase in internal energy and dW the work done (all 

expressed in same units). Here dQ = Cv dT and dW = 0, so that 

CV dT = Du 2.9 

Let the same gas be now heated at constant pressure p until the temperature is raised by the 

same amount of dT. The heat supplied will be CP dT. Now, the gas would expand and 

external work against the pressure p would be done. If dV be the change in volume of the gas, 

the external work would be p dV. Thus, for this process, dQ = Cp dT and dW = p dV. Hence, 

from the first law of thermodynamics, we have 
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CP dT = dU + p dV. 2.10 

The temperature change is the same in both the cases. Since internal energy U depends only 

on the temperature for an ideal gas (Joule's law), the internal energy-change dU is same in 

both processes. Then, eliminating dU from eq. (2.9) and (2.10) we get 

(CP – CV) dT = p dV. 2.11 

Now, ideal gas equation,   

pV = RT, 

where R is the universal gas constant. 

Differentiating it, keeping p constant, we get 

p dV = R dT 

Putting this value of p dV in eq. (2.11), we obtain (CP – CV) dT = R dT 

or,CP – CV = R 2.12 

This relation was first obtained by Mayer in 1842 and is therefore called “Mayer's relation”. 

It is perfectly true for an ideal gas and very nearly true for real gases at moderate pressures. 

In Mayer's relation, R must be expressed in the same unit as CP and CV. Usually CP and CV 

are expressed in cal/(mole-K). Hence R must also be in calorie/(mole-K). 

Since R = 8.31 joule/(mole-K) and 4.18 joule = 1 calorie, we have 

 

CP – CV = 1.99 calorie/(mole-K) ~ 2 calorie/(mole-K). 

 

2.8. Application of First or Ist Law of thermodynamics  

In this section we will apply first law of thermodynamics to certain basic processes to get 

simple relations involving the internal energy, work done and heat. 

a. Explanation of work in different Processes  

i. Isochoric process 

An isochoric process is one in which the system's volume stays unchanged. If volume 

remains constant then the work done W (=pdV ) by the system will be zero (dV = 0). But 

by the first law of thermodynamics we have, 

∆𝑈 = ∆𝑄 − ∆W 

Putting ∆W =0, we get, 

∆𝑈 = ∆𝑄 

Hence, in an isochoric process, the heat taken or lost by the system is entirely used in 

increasing or decreasing the internal energy of the system. 
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ii. Isobaric process 

The process, system’s pressure remains constant known as isobaric process. The boiling of 

The term "isobaric process" refers to a systemic process where the system pressure is 

constant. Examples of isobaric processes are the boiling of water to steam and the freezing of 

water to ice. 

Let m gm of water is converted into steam at constant pressure and temperature also. If Vl is 

the volume of the water in liquid state and Vv is the volume of water in vapour state, then 

work done by the system (in expanding from V1 to VV against the constant pressure p) will be, 

 

 

 

and heat absorbed by the mass m during the change of state is, 

Q = m Lv  

where Lv is latent heat of vaporization. 

If ∆U be the change in its internal energy, then from the first law of thermodynamics, 

∆𝑈 = 𝑄 − W 

∴ ∆𝑈 = 𝑚𝐿 − (Vv – Vl) 

It is the expression for change in internal energy of the system during vaporization (isobaric 

process). Similarly, we can determine the expression for the change in the internal energy of 

the system during freezing (isobaric process), 

∆𝑈 = 𝑚𝐿 − p(Vice – Vl) 

Here Li is the latent heat of fusion of ice. 

iii. Isothermal Process 

If the temperature of the system is constant the thermodynamic process is called isothermal 

process. The temperature remains constant only in the change of state i.e., liquid to vapour or 

liquid to ice as in the case of isobaric process. So we may write ∆𝑈 = m Lv – p(VV – Vl) and   

∆𝑈 = m Li – p(Vice – Vl) 

iv. Adiabatic Process  

An adiabatic process refers to one in which a system's total heat stays steady, indicating that 

no heat enters or exits the system. Heat can't escape from or enter the system as it is 

thermally separated from its surroundings. So for such a process heat Q = 0, and from the 

first law of thermodynamics, we have 
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∆𝑈 = 𝑄 − W 

∆𝑈 = −W 

Thus, in an adiabatic process amount of work done is equals to change in internal energy. If 

work is done by the system i.e., work done is positive, the internal energy is decreased. On 

the other hand if work is done on the system i.e., work done is negative, the internal 

energy is increased. When a gas is suddenly compressed (adiabatic process), the work done 

on the gas is added to its internal energy so that its temperature rises. That is why a bicycle 

pump becomes hot when air in it is compressed to fill in cycle tube. Similarly, when a gas is 

suddenly expanded, the work against the surroundings is done by drawing heat from its 

internal energy. A decrease in its internal energy decreases the temperature of the gas. That 

is why when a motor car tyre bursts, the tyre gets cooled because of sudden expansion of air 

adiabatically. 

v. Free Expantion  

Free expansions happens when a system expands in a way that neither energy enters nor exits 

the system (adiabatic process) and no work done by or on the system.  

Let us imagine an adiabatic, adequately insulated vessel with rigid walls that are divided into 

two sections, one of which has been evacuated and other containing a gas. The gas burst into 

a vacuum and spreads freely when the partition is suddenly removed.  

If Ui and Uƒ be the initial and final internal energies of the gas, then by the first law of 

thermodynamics, 

∆𝑈 = 𝑄 − W 

But, Q = 0, W = 0 

So, ∆ 𝑈 = 0 

i.e., Ui – Uƒ = 0 

or Ui = Uƒ 

Thus, in the free expansion, the initial and final internal energies remain the same. 

vi. Cyclic Process 

In a cyclic process, the system after passing from initial state to final state comes back to its 

initial state. So, in this process the net change in the internal energy of the system is zero 

(∆𝑈 = 0). Hence, by the first law of thermodynamics, ∆𝑈 = 𝑄 − W, we have 

∆𝑈 = 0 so, Q – W = 0 or Q = W 

It means, in the cyclic process the heat taken by the system is equal to the work done by the 

system. In differential form, we may write 
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𝑑𝑄 = 𝑑W  

b. Poisson’s Equation 

Let us consider an ideal gas having a volume V, pressure P and Kelvin temperature T. 

Suppose it undergoes a small adiabatic expansion. In doing so, it does the necessary external 

work at the cost of its own internal energy which therefore decreases and hence its 

temperature falls. 

Let dV be the infinitesimally small change in the volume of the gas at pressure p. Then the 

external work done by the gas in its expansion will be 

dW = p dV            (1) 

If dT be the fall in temperature of the gas, the heat lost by it will be CVdT where Cv is the 

gram-molecular specific heat at constant volume. Now, in an ideal gas the molecules do not 

attract each other, so that its internal energy is entirely the kinetic energy of the molecules 

which depends only on the temperature of the gas. Therefore, the decrease in the internal 

energy of the gas by dU is equal to the heat lost by it. Thus, 

dU = CV dT            (2) 

Now, the first law of thermodynamics for an adiabatic process (dQ = 0) becomes  

dU + dW = 0 

Substituting the values of dU and dW from eq. (2) and eq. (3) we get 

CvdT + dV = 0            (3) 

Now, the ideal gas equation for one mole substance is pV = RT 

where, R is the universal gas constant. This on differentiation gives  

 

Substituting for dT in eq. (3), we get  

 

 

But R = CP – CV (Mayer's relation). 
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where 𝛾 is the ratio of the gram-molecular specific heats of the gas (𝛾 = Cp/CV). Integrating 

the last expression, we have log P + 𝛾 log V = a constant or  . 

This relation is known as Poisson's law. 

If Pi , Vi be the initial and Pƒ , Vƒ the final pressures and volumes of the gas respectively, then 

. 

2.9. Limitation of First Law of Thermodynamics  

a. There is no constraint on the direction in which heat can flow: the first law clearly 

states the connection between the quantity of heat received and the quantity of 

work that a system can perform. On the other hand, it doesn't say if heat can move 

from a cold end to a hot end. For example, freezing the ice to a low temperature is 

extracting heat from it. Here is a little external work to be performed. 

b.  Does not indicate whether the reaction is feasible: The first law makes no inquiry 

of whether the process is feasible. For example, equilibrium must be achieved 

when an iron rod is heated at one end, this is possible only using energy. 

c. It is practically impossible to transform all of the heat energy into an equivalent 

amount of work. Another law of thermodynamics,  the second law, is required to 

get around these restrictions. 

The direction of the heat flow and the possibility of the reaction are both predicted by the 

second law of thermodynamics. The second law also tells that certain amount of heat energy 

cannot be completely converted into equivalent amount of work. 

Self-Assessment  

1. What is the First Law of Thermodynamics, and how is it mathematically expressed? 

2. Define an isothermal process and explain how the First Law of Thermodynamics 

applies to it. 

3. What is an adiabatic process, and how does it differ from an isothermal process in 

terms of heat exchange? 

4. Explain what an isobaric process is and provide an example. 

5. Describe an isochoric process and its significance in thermodynamics. 

6. The First Law of Thermodynamics is a statement of which principle?  

a) Momentum conservation   b) Mass conservation  

c) Energy conservation   d) Entropy conservation 

7. In an isothermal process, the internal energy change (ΔU\Delta UΔU) of an ideal gas 

is:  
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a) Positive     b) Negative 

c) Zero      d) Cannot be determined 

8. During an adiabatic process, the heat exchanged (QQQ) with the surroundings is:  

a) Positive     b) Negative 

c) Zero      d) Infinite 

9. Which of the following processes occurs at a constant pressure?  

a) Isothermal     b) Adiabatic 

c) Isobaric     d) Isochoric 

10. In an isochoric process, the work done by the system (WWW) is:  

a) Positive     b) Negative 

c) Zero      d) Infinite 

11. The First Law of Thermodynamics is mathematically expressed as:  

a) Q=ΔU+WQ = \Delta U + WQ=ΔU+W b) ΔU=Q−W\Delta U = Q - WΔU=Q−W 

c) Q=ΔU−WQ = \Delta U - WQ=ΔU−W 

d) ΔU=Q+W\Delta U = Q + WΔU=Q+W 

12. During a cyclic process, the change in internal energy (ΔU\Delta UΔU) over one 

complete cycle is:  

a) Positive     b) Negative 

c) Zero      d) Cannot be determined 

13. In an isobaric process, the work done by the system is given by:  

a) W=PΔVW = P \Delta VW=PΔV 

b) W=ΔP⋅VW = \Delta P \cdot VW=ΔP⋅V 

c) W=P⋅ΔTW = P \cdot \Delta TW=P⋅ΔT 

d) W=ΔP⋅ΔVW = \Delta P \cdot \Delta VW=ΔP⋅ΔV 

14. Which of the following is true for an adiabatic process?  

a) Temperature remains constant b) No heat is exchanged with the surroundings 

c) Volume remains constant  d) Pressure remains constant 

15. In a thermodynamic process, if the heat added to the system is equal to the work done 

by the system, the change in internal energy (ΔU\Delta UΔU) is: 

a) Positive    b) Negative 

c) Zero     d) Infinite 

Answers: c), c), c), c) ,c), b), c), a), b), c) 
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Chapter 3 

Thermodynamics Process 

 

3.1. Heat- Path Function 

Transfer of energy from one part to the other part of a body by virtue of difference of 

temperature defines Heat. This heat transfer take by different processes namely conduction, 

convection and radiation, also the amount of heat (thermal energy) produced is always 

proportional to the amount of work done. Both are the transient phenomena and have same 

unit. The heat Q positive if is absorbed by the system or negative if rejected by the system.  

It is path function. It indicates that as a system changes from state 1 to state 2, the quantity of 

heat (Q) delivered, depends on the system's path, or the intermediate stages it travels through. 

Henceforth it is an inexact differential and written as Q 

On integrating, we get 

 

Here, 𝑄2 define the transfer of heat during the given process between the process 1 and 2 

along a path A. 

 

3.2. Work – Path Function   

The work can be done by system or it can be done on the system. Work done is positive 

when it is done by the system, negative when it is done on the system.  

Suppose a system is state taken from state 1 to 2, by two different ways.  

 

Fig: 3.1 

A and B shown in Fig. (3.1). The processes are quasi-static. 

The area under P-V plot gives the work done in that process. The graphic above illustrates 
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how the regions under these curves vary, which in turn causes variations in the amounts of 

work completed. 

For path A 

 

For path B  

 

The values of WA not equal to WB. Consequently, work cannot be defined as the difference 

between a system property's values in the two states. Therefore, it is not correct to represent   

 

It may be pointed out that it is meaningless to say "Work in a system or work of a system". 

Work cannot be compared to a system's pressure or temperature. 

It terms of calculus δW is an in exact differential. In other words, W is not a system 

characteristic, and δW cannot be specified as the difference of two values that only rely on 

the initial and final states. 

Heat and work are hence path functions that depend entirely on the process. These aren't 

point functions like temperature or pressure. The work required to get the system from state 1 

to state 2 will differ based on the path chosen. 

 

3.3. Comparison of Heat and Work 

Some of the similarities between heat and work 

1. Both work and heat are transient phenomena. Systems don't operate or generate heat. 

The unit of work is the same as the heat.   

2. Heat transfer or work done can occur when a system changes. 

3. The phenomena of heat and work are borderline. At the system's edge, they are 

observed.  

4. The energy that crosses the system boundary is represented by heat and work.  

5. Since heat and work are route functions, their differentials are inaccurate. The 

symbols δQ and δW stand for them, respectively. 

 

3.4. Quasi-Static Process 

A quasi-static defines that, a process in which the deviation from thermodynamic equilibrium 
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is very small so that all states are considered as equilibrium states through which the system 

passes during the process.  

The P-V plot under variable pressure and infinitesimal during compression from initial 

volume, Vi, to final volume, Vf, as shown in the diagram (Fig. 3.2). The 

shaded area indicates work done on the gas. Many processes actually resemble quasi-static 

processes in practice and can be treated as such with little or no error. 

 

Fig 3. 

Consider a gas expands in a closed cylinder with a frictionless piston. The pressure of gas 

inside the cylinder is higher than pressure of surrounding while the piston moved inwardly by 

apply weight on it. Small weights withdrawn steadily one at a time will cause the gas inside 

the cylinder to expand very slowly, making the process nearly static. However, expansion 

occurs quickly and is a non-equilibrium process if all the weights are removed at once. 

During this process, the system will never remain in equilibrium. 

An ideal concept that may be applicable to all thermodynamic systems, including electric and 

magnetic systems, is a quasi-static process. It should be noted that the criteria for such a 

process require a very slow rate, that is impractical to attain in practice.  

 

3.5. Wok Indicator Diagram 

The work done in a quasi-static thermodynamic process (e.g., a slow change in volume of a  

gaseous system) can be easily obtained with the help of pressure P and volume V graph. Such 

plots are called Indicator diagrams. These diagrams can be drawn with the help of a device 

called the indicator which directly records the changes in the volume and pressure. 

 

3.6. Thermodynamics Process 

A change in the thermodynamic coordinates (pressure, volume, temperature etc.) of a 

thermodynamic system brings about a change in the state of the system and is called a 
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thermodynamic process or simply a process. 

 

3.7. Work Done during different Thermodynamic Process  

a. Isothermal Process 

If the change in pressure and volume of a gas (system) takes place in such a manner that its 

temperature remains the same throughout, it is called an isothermal process. 

 

Let a gas be filled in a cylinder with a piston at room temperature under atmospheric 

pressure. If the piston be pushed down a little to compress the gas (i.e., the work is done on 

the gas) its internal energy will increase and its temperature will rise a little. If the 

temperature is to be maintained constant, the extra heat must at once be conducted to the 

surroundings. Similarly, if the gas is allowed to expand (push the piston up a little) i.e., work 

is done by the gas, its internal energy decreases and its temperature falls a little. Again to 

maintain its temperature constant, heat must at once be conducted to it from the 

surroundings. 

Let 1 gm mole of a perfect gas is allowed to expand under isothermal conditions. Let its 

initial volume V1 and pressure P1 be represented by point A and its final volume V2 and 

pressure P2 by the point B on P-V indicator diagram (Fig. 3.3) keeping its temperature 

constant. 

Let us consider a small increase dV in the volume of the gas at pressure P. Then, the work 

done by the gas, 

dW= p dV (shaded strip in the figure) (3.4) 

Therefore, the total work done by the gas during the whole expansion from volume V1 at A to 

volume V2 at B will be 

 

Since, for a perfect gas pV = RT, where R is the gas constant for 1gm mole of the gas, then 
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Putting the value of P in equation (3.5), we get 

 

Since, the temperature remains constant and Boyle's law is obeyed, therefore 

 

Hence, equation (3.8) become 

 

If we take 1 gm of the gas in place of 1 gm mole then the gas constant will be r and equation 

(3.8) and (3.10) then become, 

 

b. Adiabatic Process  

Adiabatic means heat does not go out or come in the system. So adiabatic process implies a 

process in which heat is neither allowed to enter nor leave the system. Thus, it is a process 

which takes place in complete thermal isolation from the surroundings.Let, a gas be filled in 

a cylinder with a piston at the room temperature and atmospheric pressure. Also the cylinder 

and piston are perfectly insulated. If the piston be pushed a little to compress the gas i.e., the 

work is done on the gas, its internal energy will increase and its temperature will rise a little 

as the heat developed cannot possibly escape out to the surroundings. Similarly, if the gas be 

allowed to expand i.e., work is done by the gas, its internal energy decreases and its 

temperature falls a little. Again no heat can possibly enter the cylinder from outside. 
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Let 1  gm  mole of a perfect gas be allowed to expand adiabatically from an initial 

volume V1 to a final volume V2, the pressure changing from P1 to P2 (P-V diagram shown in 

Fig. 3.4). Then, work done by the gas, 

 

Since, for a perfect gas, in an adiabatic process, 

 

Putting the value of p in equation (3.13), we get 

 

 

Also in adiabatic expansion, we have 

𝑃1𝑉1
𝛾 = K = 𝑃2𝑉2

𝛾 

Putting the value of K in equation (3.17), we have 

 

It can be shown that the work done by the gas during adiabatic expansion from volume V1 at 

pressure p1 to volume V2 at pressure p2 given by the area under the p-V curve for the gas i.e., 

 

Again, we have 
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As the temperature of the gas changes from T1 to T2 and also we have p1V1=RT1 and 

p2V2=RT2 (where R is gas constant for 1 gm mole gas), substitution of these values in 

equation (3.18) results  

 

If we take 1gm of the gas in place of 1 gm mole then the gas constant will be r and eq.(3.21) 

becomes, 

 

Since, in an adiabatic process, heat is not allowed to enter or leave the system, the external 

work W is done by the gas at the expense of its own internal energy and the work done 

becomes equal to decrease in internal energy of the gas. 

 

c. Reversible process  

In this process, if a process reversed in a way that leaves no alterations in the environment or 

in any of the bodies involved, and all changes that occur during the direct process are 

precisely duplicated in the opposite order and sense. A system should produce the same 

quantity of heat in the reverse process if, for instance, a certain amount of work is extracted 

from it and a system receives a given amount of heat in the direct process. 

Conditions of Reversibility 

A reversible process must satisfy following two conditions: 

1. 1. There must be no dissipative forces at all, including electrical resistance, magnetic 

hysteresis, friction, viscosity, and inelasticity. Assume a gas is housed in a piston-

equipped cylinder and is in touch with a source of constant temperature. The piston is 

loaded in such a way that the pressure it applies to the gas precisely balances the 

pressure the gas applies to it. As the piston's load decreases, the gas expands and 
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exerts external force to push the piston upward and reduce friction between the piston 

and the cylinder walls. This work requires heat, which is extracted from the source. 

The gas will compress if the piston's load is raised at this point. Now, the effort 

expended in raising the piston during the expansion is recovered. Conversely, greater 

effort needs to be made to minimise friction. Thus, expansion can't be reversed. In a 

similar vein, the process becomes irreversible due to additional dissipative effects 

including inelasticity and electrical resistance. 

2. The process needs to be quasi-static. The gas expands and does some work in order to 

provide the piston with kinetic energy. More effort has to be done to supply the piston 

kinetic energy since this work cannot be recovered during the reverse operation. 

Therefore, the pressure of the gas on the piston must differ by an infinitesimal amount 

from the pressure the piston applies to the gas in order to cause the gas to expand 

reversibly. Provided that expansion or compression occurs indefinitely slowly, no 

kinetic energy will be generated. In reality, these requirements are never met. 

Therefore, a reversible process is only a theoretical idea. 

d. Irreversible process  

Any process which cannot be reversed called an irreversible process. Irreversible processes 

includes all practical processes like free expansion, Joule-Thomson expansion, electrical 

heating of a wire, diffusion of liquids and gasses, etc. Irreversible processes comprise all 

natural processes such as radiation, conduction, radioactive decay, etc. 

 

Self-Assessment 

1. What is the Second Law of Thermodynamics? 

2. Define a quasi-static process and explain its significance in thermodynamics. 

3. What is a work function in the context of thermodynamics? 

4. Explain what is meant by a path function and give an example. 

5. Describe a reversible process and its characteristics.  

6. Which of the following statements is a correct interpretation of the Second Law of 

Thermodynamics?  

a) Energy is conserved. 

b) Isolated system’s entropy is always decreases. 

c) Heat cannot spontaneously flow from a colder body to a hotter body. 

d) The total energy of a system remains constant. 
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7. In a quasi-static process, the system:  

a) Is always in non-equilibrium.   b) Changes state infinitely slowly. 

c) Experiences rapid state changes.  d) Remains at constant volume. 

8. Which is a thermodynamics quantity depends on path follows?  

a) Internal energy     b) Enthalpy 

c) Work      d) Temperature 

9. A work function in thermodynamics typically refers to:  

a) The amount of heat required to raise the temperature of a substance. 

b) The energy required to remove an electron from a solid. 

c) The energy transferred by the system due to a force acting through a distance. 

d) The energy stored in chemical bonds. 

10. Which of the following is true for a reversible process?  

a) It occurs instantaneously. 

b) It increases the entropy of the universe. 

c) It can be reversed without leaving any net change. 

d) It is the same as an adiabatic process. 

11. An irreversible process is characterized by:  

a) Infinite slowness.    b) No increase in entropy. 

c) Reaching equilibrium at every stage.  d) Dissipative effects such as friction. 

12. The entropy of an isolated system:  

a) Always remains constant.   b) Always decreases. 

c) Always increases or remains constant. 

d) Can either increase or decrease depending on the process. 

13. In a cyclic process, the change in entropy of the system over one complete cycle is:  

a) Positive      b) Negative 

c) Zero      d) Cannot be determined 

14. Which of the following is an example of a path function in thermodynamics?  

a) Entropy      b) Enthalpy 

c) Heat      d) Pressure 

15. The efficiency of a heat engine is fundamentally limited by:  

a) The First Law of Thermodynamics.  b) The Second Law of Thermodynamics. 

c) The Zeroth Law of Thermodynamics.  d) The Third Law of Thermodynamics. 

Answers: 

1. c), b), c), c), c), d), c), c), c), b) 
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Chapter 4 

Heat Engine and Second Law of Thermodynamics 

 

4.1. Heat Engine 

Any cyclic device that continuously converts into mechanical work is called a heat engine. 

There are three main parts in a heat engine: a hot body called hot reservoir or source, working 

substance, and a cold reservoir or 'sink'.  

 

Fig: 4.1 

A certain amount of heat is taken by the working substance from the source, part of it is 

converted into work, and the rest is rejected into the sink. Because the working substance 

returns to its initial state, this order of events is commonly referred as "cycle process". In Fig. 

4.1, this is depicted schematically. Performing the same cycle repeatedly results in continual 

work accumulation at the cost of thermal energy.  

Assume that the working substance absorbs heat Q1 from the source and reject heat Q2 into 

the sink. Consider that W indicates the total work performed. Q1-Q2 is the net the amount of 

heat absorbed by the substance; since its internal energy remain constant during the system's 

return to its initial state, the heat has actually been converted into work. Q1-Q2 = W is the 

result of applying the first law of thermodynamics to a single cycle. 

Thermal Efficiency: It is the ratio of the work obtained to the heat taken from the source, that 

is 

 

Often the efficiency is expressed in percentage and then 



34  

 

Based to this equation, the heat engine's efficiency will reach unity when Q2 = 0 (no heat is 

transferred to the sink). In reality, however, this is not possible. It suggests that not all of the 

heat that comes from the source can be utilized by the engine to produce work. 

We cannot define the efficiency as W/Q2, because in that case we shall have 

 

so that the condition for the ideal value of efficiency (i.e.,  =1) would be Q1=2Q2 which is 

absurd. 

 

4.2. Reversible Engine 

The working substance of an engine goes through a cycle. It absorbs heat from a hot body, 

converts some of it in to work, and reject the remaining heat to a cold body before 

coming back to its initial condition. The surroundings and the hot and cold bodies experience 

changes during this cycle. This cycle is a "reversible cycle" and the engine is a "reversible 

engine" if it can be completed in reverse order with no changes to the environment and all of 

the component of engine completely return to their initial states. Such an engine can be 

realized if: (i) all of the engine components are friction-free; and (ii) the working substance's 

temperature and pressure are always fairly stable to their surroundings throughout the cycle, 

resulting in quasi-static operation for all of the cycle's operations. 

All the above conditions are not possible in practice. So that reversible engine is a 

hypothetical phenomenon or an ideal conception. 

 

4.3. Second Law of Thermodynamics  

In accordance with the first law of thermodynamics, mechanical work and heat are equivalent 

when one is fully transformed into the other (W=Q). It is a thermodynamic system employing 

the conservation of energy principle. 

However, the first law would not be broken if we suggested taking a specific amount of heat 

from a body and converting it completely into work. However, in real life, this is found to be 

impossible. If this were possible, we might utilize the heat from the ocean's water to move 

ships across it. Thus, the first law only states that energy is going to be conserved if a process 

occurs.  
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It doesn't indicate if the process will work or not. Similarly, whether heat moves from a hot 

body to a cold body or the other way around when two bodies with different temperatures 

come into touch does not break the first law. We know from observation that heat does not 

transfer from a cold to a hot body. Such experimental facts are supposed to be comprised into 

thermodynamics through the second law. 

There are two statements for the second law of thermodynamics: - 

A. Kelvin-Planck’s statement 

In case of a heat engine a working substance absorbed heat form source converts its some 

part in to work and rest I transfer to the cold body. There has never been an engine designed 

that operates in a cycle where all of the heat absorbed by the source is, transferred to work; 

some heat must be rejected to a cold body.  

This experience led Kelvin and Planck to state the following: 

“It is impossible to construct an reversible engine which operates in a cycle, which takes heat 

from from a hot body convert it completely into work, without rejecting any part to the sink.” 

 

B. Claussius statement 

Within a refrigerator, a working substance absorbs heat from a cold body (sink), receives a 

net amount of work from an external agency  (compressor), and reject heat to a hot body 

(source). Thus, it uses outside labor or energy to transfer heat from a cold body to a hot body. 

There has never been a refrigerator created that doesn't require an outside energy source to 

function. Clausius declare that: 

"It is impossible to construct a device which operating in a cycle, will take heat from a cold 

body and reject it to a hot body without expenditure of work by an external energy source" . 

Stated differently, heat cannot naturally go from a colder body to a warmer one. 

 

4.4. Equivalence of kelvin-Planck and Claussius statements 

We can express that both the laws are equivalent. 

To verify the equivalence of two statements, consider a a refrigerator R in fig 4.2 is able to 

transfer heat Q2 from a cold body to a hot body in the absence of an external energy source. 

It is consequently against the Clausius statement. Let's say an engine E that is operating 

between the source and sink bodies absorbs heat Q1 from the hot body and reject a 

component of heat to sink and convert a part in to (W = Q1-Q2),. The law is not broken by the 

engine E alone. However, when the engine E and the refrigerator R are coupled, they create a 

machine that takes heat Q1–Q2 from the hot body and convert it into work without 
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rejecting  any heat to the cold body. This clearly violates the Kelvin-Planck statement. 

  

 

 

 

 

 

Fig : 4.2 

In the same way, suppose an engine E (Fig.4.2) that takes heat Q1 from a hot body and 

transforms it completely into work W(=Q1), without rejecting heat to the cold body. The 

Kelvin-Planck statement is violated. Suppose for the time being that a refrigerator R working 

between the the same hot and cold bodies takes heat Q2 from the cold body, experiences 

work W(=Q1) from a external agency, and outputs heat Q1+Q2 to the hot body. The law is 

not broken by the refrigerator R by itself. However, when combined, E and R create a device 

that, without the need for an outside energy source, transports a certain quantity of heat Q2 

from a cold body to a hot one. This is clearly against the Clausius statement. 

The first law of thermodynamics is reinforced by the second law. All that the first law tells us 

is that no devices can put out more energy than it takes in. It includes no mention of 

restrictions or prerequisites for the distribution of energy. But the second law accomplishes it. 

For instance, heat cannot naturally move from a colder to a hotter body or be entirely 

transferred as work by a substance. Though not prohibited by the first law, these phenomena 

are prohibited by the second law. 

 

4.5. Carnot Cycle and Carnot Engine  

Sadi Carnot, a French engineer, developed a theoretical reversible engine such that it operates 

between two reservoirs and operates with maximum possible efficiency. The cycle of 

processes adopted by this engine is called Carnot cycle. The Carnot cycle is a reversible 

cycle, this means that all the processes involved in it are reversible. 

The Carnot cycle consists of two isothermal processes and two adiabatic processes. Fig.3.8 

shows the Carnot cycle for a heat engine with ideal gas as its working substance. 
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The Carnot cycle has the following sequence of operations: 

 Step 12 : Reversible isothermal expansion of gas (P1,V1,T1P2,V2,T1) 

In this step, the gas absorbs heat (Q1) from the reservoir at temperature T1. Since the process 

is isothermal, there is no change in internal energy and so the temperature of the system. 

 

 Step 23 : Reversible adiabatic expansion of gas (P2,V2,T1P3,V3,T2) 

In this step, the work is done by the gas adiabatically at the expense of internal energy which 

causes drop in temperature of system. From the first law of thermodynamics, 

 

 Step 34 : Reversible isothermal compression of gas (P3,V3,T2P4,V4,T2) 

In this step, the gas releases heat (Q2) to the reservoir at temperature T2. There is no change 

in internal energy and temperature of system as the process is isothermal. From the first law 

of thermodynamics. 
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 Step 41 : Reversible adiabatic compression of gas (P4,V4,T2P1,V1,T1) 

In this step, the work is done on the gas adiabatically. This leads to increase in internal 

energy of the system causing increase in temperature of system. From the first law of 

thermodynamics, 

 

 

4.6. Efficiency of carnot engine 

The efficiency of heat engine is defined as ratio of net work done to the heat absorbed in one 

complete cycle. If the heat engine receives heat Q1 and rejects heat Q2 then efficiency is 

given by- 

 

Now, the total work done 

 

 

Now Since 2→3 is an adiabatic process, 
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Similarly, since step 4→ 1 is an adiabatic process 

 

From eqs. (3.35) and (3.36) 

 

Using Eq. (3.33) in Eq. (3.37), we get 

 

From relations (3.31) and (3.38), we have 

 

i.e. in a Carnot cycle, the ratio of the amount of heat rejected to the sink to the heat received 

from the source is equal to the ratio of their respective temperatures. 

In other words, the efficiency of a Carnot engine is unaffected by the kind of working 

substance; instead, it depends entirely on the temperature of the source and sink. The area in 

the indicator diagram (P V diagram) that the Carnot cycle covers represents the graphic 

efficiency of a Carnot engine. 

 

4.7. Carnot Theorem  

The second law of thermodynamics gives two important conclusions which can be taken 

together in the form of a theorem called Carnot's theorem. According to this theorem "The 

efficiency of a Carnot reversible engine is maximum and is independent of the nature of the 

working substance". 
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Or 

"The efficiency of all reversible heat engines operating between the same two temperatures is 

the same and no irreversible heat engine working between the same two temperatures can 

have greater efficiency than Carnot's reversible heat engine". 

To prove it, let us consider two heat engines EA and ER operating between a source at 

temperature T1 and sink at temperature T2 (Fig. 3.9). Let EA be any heat engine and ER be a 

reversible heat engine. Let us assume efficiency ηA of EA is greater than efficiency ηR of ER. 

In order to prove the Carnot theorem we have to contradict our assumption. 

Let the rates of working of the engine EA be Q1A and that of ER be Q1R such that- 

Q1A=Q1R=Q1  

As assumed, ηA > ηR 

 

Let us reverse ER. Since ER is a reversible heat engine, therefore, the magnitude of heat 

transferred and work done will remain the same but their directions will reverse (Fig. 3.10). 

Since WA > WR some part of WA which is equal to WR in magnitude can be fed to drive the 

reversed heat engine ER. Since, Q1A=Q1R=Q1, the heat discharged by ER may be supplied to 

EA thus the source may be eliminated. The net result is that EA and ER together constitute a 

heat engine which operating in a cycle produces a net work done WA-WR (Fig. 3.11) while 

exchanging heat with a single reservoir at temperature T2, thus violating the Kelvin-Planck 

statement. Hence our assumption is wrong. 
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4.8. Carnot Engine as a Refrigerator 

When a Carnot engine works in the reverse direction i.e., when it absorbs Q2 amount of heat 

from the sink and work W is done on the working substance and finally Q1 amount of heat is 

rejected to the source at higher temperature, the arrangement acts like a refrigerator. 

The efficiency of a refrigerator is measured in terms of coefficient of performance. 

The coefficient of performance k is defined as the ratio of the heat absorbed from the sink to 

the work done on the working substance by the external agent. i.e., 

 

Hence, the value of k may be greater than unity. 

 

Self-Assessment 

1. What is a heat engine and how does it work? 

2. Describe the Carnot engine and its significance in thermodynamics. 

3. What is Carnot's theorem? 

4. Explain the working principle of a refrigerator. 

5. How does the efficiency of a Carnot engine compare to that of a real heat engine? 

6. A heat engine operates between two reservoirs at temperatures THT_HTH and 

TCT_CTC. According to the Second Law of Thermodynamics, which of the following 

statements is true?  
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a) It is possible to convert all the heat energy from the hot reservoir into work. 

b) Some heat must be expelled to the cold reservoir. 

c) The efficiency of the heat engine is independent of the temperatures of the reservoirs. 

d) The engine can be 100% efficient. 

7. The efficiency of a Carnot engine depends on:  

a) The working substance used in the engine. 

b) The temperatures of the heat reservoirs. 

c) The pressure at which the engine operates. 

d) The volume change during the engine cycle. 

8. Carnot's theorem states that:  

a) No real engine can be more efficient than a Carnot engine operating between the same 

two temperatures. 

b) The efficiency of all reversible engines is the same. 

c) The efficiency of an irreversible engine is higher than that of a reversible engine. 

d) The efficiency of a Carnot engine is always 100%. 

9. Which of the following processes does not occur in a Carnot cycle?  

a) Isothermal expansion 

b) Adiabatic expansion 

c) Isothermal compression 

d) Isochoric heating 

10. The maximum efficiency of a Carnot engine operating between two heat reservoirs 

depends on:  

e) The heat added to the system. 

f) The work done by the system. 

g) The temperature difference between the reservoirs. 

h) The specific heat capacity of the working substance. 

11. In a heat engine, the work output is equal to:  

a) The heat input. 

b) The heat input minus the heat expelled to the cold reservoir. 

c) The heat expelled to the cold reservoir. 

d) The heat input plus the heat expelled to the cold reservoir. 

12. Which of the following is true for a refrigerator?  

a) It transfers heat from a high-temperature region to a low-temperature region using 

work. 
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b) It transfers heat from a low-temperature region to a high-temperature region using 

work. 

c) It converts all input work into heat. 

d) It operates on the principle of spontaneous heat flow. 

13. The Second Law of Thermodynamics implies that the efficiency of any real heat engine 

is:  

a) Equal to the efficiency of a Carnot engine. 

b) Greater than the efficiency of a Carnot engine. 

c) Less than the efficiency of a Carnot engine. 

d) Not related to the efficiency of a Carnot engine. 
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Chapter 5 

Entropy 

 

5.1 Concept of Entropy 

Initially the thermodynamic state of a system was represented by only three variables named 

pressure, volume and temperature. In 1854, Rudolf Clausius while studying the 

thermodynamic systems realized that to represent the thermodynamic state of a system, in 

addition to these three variables we must have at least one more thermodynamical variable. 

This added quantity was named “Entropy”. It was proved successfully that like pressure, 

volume and temperature the entropy is also a function of the state of the system. 

 

The concept of entropy was introduced for many reasons. The changes in the state of a 

system can be represented in different ways e.g. the isothermal change (in which the 

temperature remains unchanged), the isobaric change (in which the pressure remains 

constant) and the isochoric change (in which the volume of the system remains constant). 

Now the real question arises that which quantity remains constant during an adiabatic 

change. It was established that the entropy remains constant in an adiabatic change in the 

system. The systems have a tendency to change from a more ordered state to a more 

disordered state. The perception of entropy expresses this in a better physical and 

mathematical form. The entropy of a substance is a real quantity, just like pressure, volume 

and temperature. Despite being an very important quantity, it can't be represented in some 

physical form. It, therefore, becomes very difficult to visualize it and to understand its exact 

nature. Entropy can be conveniently understood by studying its effect, properties and other 

aspects. 

 

Let us consider a number of isothermals I1, I, I3,.... at temperatures T1, T2, T3... respectively 

as represented in the P-V diagram (Fig. 5.1). let A1 and A2 are two adiabatic curves which 

cut the isothermal at points (a, b), (c, d), (e, f),     respectively. We can now imagine abdca 

to be a Carnot cycle, so that it works between temperatures T1 and T2, extracting heat Q1 

from the source and rejecting Q2 to the sink, so that the efficiency of a Carnot engine 

completing the cycle abdca can be given by 
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Similarly, for Carnot cycle cdfe, extracting heat Q2 from the source at temperature T2 and 

rejecting Q3 to sink at T3, then we have 

 

 

Fig: 5.1 

Similar relations can be obtained for other mini Carnot cycles bound by adiabatics A1 and 

A2. Obviously, for all these Carnot cycles 

 

In going from one adiabatic to the other the system either absorbs heat or rejects it. If 

the exchange of heat is Q at temperature T, then generalizing relation (4.3), we can write- 

 

This ratio is determined by two adiabatics, it can be regarded as some measure of the 

process. This constant ratio Q/T is given the name entropy of the system. 

If S1 and S2 are the entropies corresponding to the adiabatic curves A1 and A2 

respectively, then we can write 
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“If the adiabatics lie very close to each other and dQ is the quantity of heat absorbed 

or rejected at a temperature T in going from one adiabatic to the other”, then change in 

entropy can be written as 

 

In the above discussion, the changes from adiabatic A1 to A2 were considered isothermal 

but this is not necessary. The only necessary condition is that the change should be reversible. 

In general, the change in entropy in passing from one adiabatic to another can be expressed 

as 

 

The expression   is a function of the thermodynamic coordinates of a 

system and refers to the value of the function at the final state minus the value at the initial 

state. This function is represented by the symbol S and is called entropy. Hence entropy of a 

system is a function of the thermo-dynamical coordinates defining the state of the system 

viz., the pressure, temperature, volume or internal energy and its change between the two 

states is equal to the integral of the quantity dQ/T between the states along any reversible 

path joining them. dS is an exact differential as it is differential of an actual function. 

Since in an adiabatic change, no heat energy is given to or removed from the system i.e. there 

is no exchange of heat, dQ = 0, therefore, the change in entropy is 

 

Thus, in an adiabatic process, the change in entropy of a system is zero or in other words, in 

the adiabatic processes, the entropy of a system remains constant. Due to this reason the 

adiabatic curves on the P-V diagram are called isentropics or constant entropy curves also. 

It is, however, difficult to form physical conception of entropy as there is nothing physical to 

represent it and it cannot be felt like temperature or pressure. Now since 

 

We conclude that dimensions of entropy are the same as the ratio of heat (or energy) and 
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temperature. Its unit is joule/Kelvin (J/K). 

5.2 Physical Significance of Entropy 

The change in the entropy of a substance defined by the relation dS=dQ/T shows that the 

heat energy has the same dimensions as the product of entropy and absolute temperature. In 

earth's gravitational field the potential energy of a body is proportional to the product of its 

mass and the height above some zero level. A comparison indicates that if we regard 

height as corresponding to temperature, then mass corresponds to entropy. Thus, entropy of a 

system is a quantity which bears to heat motion a similar relation as mass bears to linear 

motion. 

5.3 Entropy changes in Reversible Process. 

As shown in figure 2, let us investigate a completely reversible process: an ABCD Carnot 

cycle. The working substance absorbs a certain amount of heat Q1 at a constant temperature 

T1 of the source through the isothermal expansion from A to B. Entropy change is positive 

when the system absorbs heat  Q1 at temperature  T1. 

 

Fig: 5.2 

Hence gain in entropy of working substance from A to B = Q1/T1 

(Source loses this heat Q1 at temperature T1; therefore, its entropy decreases by Q1/T1 

There is no change in entropy during the adiabatic expansion from B to C since heat is not 

absorbed or released. The working substance losses entropy from C to D = Q2/T2 (the sink 

gains this heat Q2 at temperature T2, therefore its entropy grows by Q2/T2) since the 

working substance gives out a certain amount of heat Q2 to the sink at a constant temperature 

T2. 

Entropy remains unchanged during the adiabatic compression from D to B. Therefore, 

Q1/T1-Q2/T2 is an overall increase in working substance entropy over the whole cycle 

ABCDA. 

But since in a complete reversible Carnot's cycle 



48  

 

It indicates that during a full cycle of a reversible process, the entire change in the working 

substance's entropy is zero. In the same way, the whole system's entropy change is also zero. 

Thus, in a reversible cycle, the system's entropy either stays constant or unchanged. i.e.  

 

where the integral sign with a circle refers to a complete cycle. 

Hence we conclude that in a reversible cyclic process, the entropy change is zero. This is 

Clausius theorem. 

 

5.4 Entropy changes in irreversible process  

Let us suppose that the working substance in an engine performs an irreversible cycle of 

changes, absorbing an amount of heat Q1 at a temperature T1 from the source and rejecting 

the quantity of heat Q2 at a temperature T2 of the sink. Then the efficiency of this cycle is 

given by 

 

According to Carnot's theorem, this efficiency is less than that of a reversible engine 

working between the same two temperatures T1 and T2 for which 

 

Considering the whole system, the source losses the entropy by an amount Q1/T1 and the 

sink gains the entropy Q2/T2 Therefore, the net change in entropy for the whole system is 

 

which is clearly greater than zero or positive. Thus there is an increase in entropy of the 
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system during an irreversible process. 

As an example of irreversible process, consider the case of conduction or radiation. Suppose 

in a system, there are two objects A and B at temperatures T1 and T2 (T1 > T2) 

respectively. In conduction (or radiation) heat flows from the object of higher temperature to 

that of lower temperature. If an amount Q of heat is transferred then 

 

Therefore, the net increase in entropy =  

Since T1 > T2, therefore the net increase in entropy is positive. 

Now we may generalize the result and say that the entropy of a system increases in all 

irreversible processes. This is known as the 'Principle of increase of entropy'. In the 

process of equalization of temperature, entropy always increases. 

 

5.5 Principle of Increase of Entropy 

In the previous article, we have seen that in a reversible processes, the entropy remains 

unchanged while in an irreversible processes, it increases. Since, in general, most of the 

processes are not perfectly reversible, therefore, there is always an increase in the entropy 

always. If the processes occur in succession the entropy goes on increasing and tends to a 

maximum value. This is known as the principle of increase of entropy. It may be stated that 

the entropy of an isolated or self-contained system either increases or remains constant 

accordingly as the processes it undergoes are irreversible or reversible. 

According to Clausius, the entropy of an isolated or self-contained system tends to a 

maximum value. Thus, the entropy of a system either increases or remains constant i.e. dS ≥ 

0 

where, = sign stands for reversible processes and > sign for irreversible processes. 

Obviously, for the stability of a system its entropy must be maximum. 

Since all physical events in the universe are irreversible, every action which takes place 

causes a certain amount of energy to be added to the universe in the form of heat through 

radiation, conduction, or friction. The additional energy is then unavailable for use in other 

processes.  
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This means that, due to irreversibility, all energy in the cosmos will eventually turn into heat 

energy and become unavailable for conversion into mechanical work; in other words, the 

universe's total energy will eventually approach zero.  

It will be linked to a state of maximum entropy, wherein all temperature differences among 

the universe's bodies will be balanced via convection, among other factors. The uniformity of 

the universe's temperature would then prevent any heat flow, making it impossible for any 

heat engine to function in this state. This is often referred as concept of energy degradation 

and suggests that even total energy is conserved, it is changed into a form that can no longer 

be used for work. 

With an increase in entropy, the thermal agitation and hence disorder of the molecules of 

substance increases i.e. growth of entropy implies a transition from order to disorder. 

Thus the principle of increase of entropy is intimately connected with the less ordered state of 

affairs. As the temperature of a system is a measure of its degree of hotness, in a similar way, 

the entropy of a system is a measure of disorder in it. At absolute zero of temperature, the 

motion of the molecules of a substance ceases, the molecules become well arranged and the 

entropy becomes zero. 

 

5.6 Temperature – Entropy diagram 

The thermodynamic state of a substance can be determined by plotting the temperature as 

ordinate and entropy as abscissa. The resulting graph is known as temperature-entropy 

diagram and is used in the checking of efficient working of actual engines. The idea of T-S 

graph was first introduced by Gibbs. 

If a thermodynamical system is given an infinitesimal amount of heat dQ , at temperature T 

then 

dQ = T dS  

where dS  is the increase in the entropy of the system. 

Therefore, in a process, total amount of heat given to the system is 

Q = ∫ TdS 

Obviously, the integral represents the area enclosed by the T-S diagram. Thus by finding the 

area of T-S diagram, we can find the amount of heat given to the system. The shape of the T- 

S graph depends upon the process. 

An isothermal change is represented by a horizontal line parallel to the entropy axis while 

an adiabatic change is represented by a vertical line parallel to T-axis because in such a 

change S remains constant. 
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Let us study Carnot cycle represented by a temperature-entropy (T-S) diagram in figure (5.3). 

 

Fig: 5.3 

As we know that Carnot's cycle consists of two isothermals and two adiabatics. The 

isothermals are represented by horizontal straight lines (parallel to entropy axis) and 

adiabatics by vertical straight lines (parallel to temperature axis) on a T-S diagram. In this 

way, in the figure, PQ represents the isothermal expansion at a constant temperature T1 of the 

source, the vertical line QR is the adiabatic expansion during which there is no change in 

entropy but a fall of temperature from T1 to T2, the temperature of the sink. RS is the second 

isothermal representing compression at constant temperature T2 and SP is the final adiabatic 

compression involving a rise of temperature from T2 to T1, entropy remaining the same. 

The amount of heat energy absorbed in isothermal expansion PQ is given by the area under 

PQ, i.e. PQNM. In a similar way, the heat rejected in isothermal compression RS is given by 

the area SRNM. 

Total heat absorbed = Area PQNM = T1 (S2 - S1) 

Heat energy converted into work = heat absorbed – heat rejected 

= area PQNM – area SRNM = shaded area PQRS 

= PS × SR = (T1 – T2) (S2 –S1) 

 

Thus, the T-S diagram gives an expression for efficiency of a Carnot's engine which only 

depends on the two working temperatures and not on the nature of the working substance. 

5.7 Entropy of a perfect Gas  
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Let us calculate the entropy of a perfect gas. Let us consider 1 gm. of a perfect gas occupying 

a volume V at a pressure P and temperature T. Let a quantity of heat dQ be given to the gas, 

then by the first law of thermodynamics, we have 

dQ = dU + dW 

If Cv is the specific heat of the gas at constant volume, dT the rise in temperature, dV the 

change in volume then we can write 

dU= Cv dT and dW = P dV Using these values in equation we get- 

dQ = Cv dT + P dV If S is the entropy per unit mass of the gas, then 

 

Now let us calculate the value of S in terms of temperature and volume. We know, 

PV = rT or P/T = r/V, where r is the ordinary gas constant for unit mass of the gas. From 

equation, we get 

 

Where, r = Cp – Cv , Mayer's relation. Cp is the specific heat at constant pressure. Now let us 

calculate S in terms of temperature and pressure. 

Again, PV = rT 

Differentiating, we get 

P dV + V dP = r dT 

Or P dV = r dT- V dP 

From equation, we get 
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Now let us calculate S in terms of pressure and volume. 

 

Differentiating above, we get 

 

Putting the value of dT, we get 

 

 

In the above  calculations, we  have  assumed the  entropy of  the gas to be  zero at zero 

temperature. In actual practice, however, we are concerned with a change in entropy of 

the gas, when the gas changes from a state of pressure P1, volume V1 and temperature T1 to 

another of P2, V2 and T2 respectively. This can be obtained by integrating relation between 

the limits T1 and T2. If we denote the change in entropy by (S2-S1), then assumes the form, 
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respectively, as 

 

All the above relations stand for unit mass of the gas. If the entropy S and the change in 

entropy (S2-S1) for m gms. of the gas is required, it can be obtained by multiplying these 

relations from by the given mass m. 

5.8 Thermodynamic or Kelvin Scale of  Temperature 

We know that the efficiency of a reversible Carnot's engine depends only upon the two 

temperatures between which it works and is independent of the properties of the working 

substance. Thus there is a property which absolutely depends on temperature and on nothing 

else. Hence, if we define a temperature scale using this property of working of Carnot's 

engine, it is an absolute scale of temperature because it does not depend upon the particular 

property of any substance as in the case of other thermometric scales. Lord Kelvin 

worked out the theory of such an absolute scale called the Kelvin's work or thermodynamical 

scale and showed that it agrees with the ideal gas scale. 

Presume that a reversible engine absorbs a certain amount of heat Q1 at temperature θ1 and 

rejects a certain amount of heat Q2 at temperature θ2, then the engine's efficiency depends on 

these two temperatures. 

 

where F is some other function of θ1 and θ2. 

Likewise, when the reversible engine operates between two temperatures, let's say θ2 and θ3 

(where  θ2>θ3), it will absorb heat from Q2 and reject heat from Q3. 

 

Also, if it works between temperatures θ1 and θ3 ( θ1>θ3), then 
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Multiplying equations 

 

Comparing it with equation we have 

F(θ1, θ3) = F(θ1, θ2)x F(θ2, θ3) 

We refer this a functional equation. Since θ2 is absent from the left side, function F need to 

be selected in a such a way that no θ2 term present in the right hend side as well.  This is 

possible if 

 

where ф is another unknown function of temperature. 

Equation (4.22) then gives 

 

Equation (4.19) gives 

 

Since θ1>θ2 and Q1> Q2, the function ф(θ1) > ф(θ2). Temperature can be determined by 

function ̄(θ), which is a linear function of θ. Considering that ̄(θ) shows a temperature on a 

new scale of τ (some multiple of θ), then 

 

 

Equation defines the Kelvin's absolute thermodynamic scale of temperature. The ratio of the 

heat absorbed and rejected by a Carnot reversible engine working between any two 

temperatures on this scale is equal to the ratio of any two temperatures. 

Now equation (4.23) can also be written as 

 

Since (Q1 – Q2) represents the work done W per cycle by the reversible engine operating 
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between the two temperature τ1 and τ2, temperatures are measured in terms of work and 

hence this scale is also known as work scale of temperature. 

5.9 Absolute Scale of Temperature 

We know that 

  

If τ2 =0, then efficiency 

  

Thus, for the efficiency to be unit i.e., η = 1, τ2 =0 

This temperature of the sink at which the efficiency of the reversible engine becomes unity is 

called the absolute zero of temperature. This is the thermodynamic definition of absolute 

zero temperature. 

From equation (4.25), it is clear that at the absolute zero of temperature (τ2 =0), Q2 =0, 

therefore, W = Q1. Therefore, the entire amount of heat absorbed by the reversible engine is 

converted into work and thus, the efficiency of the engine becomes unity. The temperature 

on this scale can never be negative i.e. τ < 0 is not possible. This is because if the temperature 

of the sink is a negative quantity ( say –m) on this scale, then from equation (4.25), 

 

The efficiency will be more than unity (η>1) which is impossible. Because in this situation, 

the engine will be producing more work than the amount of heat received. This can never be 

true as it will be a violation of the second law of thermodynamics. Thus, negative 

temperatures are not possible on the absolute scale of temperature. That is why τ = 0 is the 

lowest possible temperature and is called the absolute zero temperature. 

5.10 Third Law of Thermodynamics: Unattainability of Absolute Zero. 

It can be easily understood why the efficiency of an engine cannot be unity i.e. 100%. For 

this to happen we must have a sink at absolute zero temperature. But nature does not provide 

us with a sink at absolute zero. This temperature is neither available nor easily attainable. 

Therefore, 100% efficiency of an engine is not possible and thus absolute zero is also 

unattainable. 

Self-Assessment  

1. Explain entropy. Give its general concept and physical significance. Prove that the 
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entropy of a system increases in an irreversible process. 

2. Give the definition of entropy. Prove that the entropy of a system remains constant 

in a reversible process. 

3. “The entropy of a substance is a unique function of its state,” explain 

4. Prove that the dimensions of entropy are the same as the ratio of heat and temperature. 

5. Show that in a reversible cyclic process, the entropy change is zero. 

6. The change in entropy of the universe in a reversible process is 

7. (i) infinite (ii) zero (iii) 1 (iv) 100 

8. The change in entropy of the working substance in a cyclic process is 

(i) 1  

(ii) infinite  

(iii)  zero 

(iv)  none of these 

9. In an irreversible process, the entropy of the universe 

(i)  remains constant 

(ii)  decreases 

(iii) increases 

(iv)  none of these 

10. In a complete Carnot cycle, the change in the entropy of the universe is 

(i)  Infinite 

(ii)  Negative 

(iii) Positive 

(iv)  zero 

11. Entropy remains constant in 

(i)  isothermal process 

(ii)  adiabatic process 

(iii) cyclic process 

(iv)  isobaric process 

12. The area of the Carnot cycle on a T-S diagram represents 

(i) heat rejected to the sink 

(ii) work done in a cycle 

(iii)heat absorbed from the source 

(iv) efficiency of the engine 
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Chapter 6 

Thermodynamics Potential 

 

6.1 Thermodynamic Potentials 

A scalar quantity which is used to represent a system's thermodynamic state is known as a 

thermodynamic potential. In 1886, Pierre Duhem introduced the idea of thermodynamic 

potentials.  Four common thermodynamic potentials are: Internal energy (U), Gibbs energy 

(G), Enthalpy (H), Helmholtz free energy (F).  

Thermodynamic potentials are of practical importance in studying the equilibrium conditions 

of a thermodynamic system. Any thermodynamic state of a system can be defined by the 

selection of thermodynamics variables, like P, V, T and S. Any two of these four variables 

can change on their own, and when they do, it makes the other variables known. Thus, there 

are only two independent variables and the others may be considered as their functions. 

Taking two of the four state variables P,V,T and S at a time, there are six variable pairs, i.e., 

(P,V), (P,T), (P,S), (V,T), (V,S), (T,S) corresponding to each pair, we can write a 

thermodynamic relation. 

There exists certain relation between these thermodynamic variables. The first and second 

law of thermodynamics provide two relations given as 

dQ = dU + PdV 

and dQ = TdS Therefore,  TdS = dU + PdV or, dU = TdS − PdV 

As change in internal energy of the system can be expressed in terms of four thermodynamic 

variables. However, for the complete knowledge of the system, some other quantities are 

required which hare based on different thermodynamics processes. For this purpose we 

introduce some thermodynamics functions depends on any of the two thermodynamic 

variable (P, V, T and S) known as thermodynamic potentials or the thermodynamic 

functions. There are four principal thermodynamic potentials and we shall discuss them one 

by one. 

a. Internal Energy 

The internal energy U of the system is a thermodynamic variable which characterises the 

system. This is also called the intrinsic energy or internal energy. The path followed between 

the two states has no impact on how the internal energy varies as the system changes between 

them. 

The internal energy of a system is defined as the equation 
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dU = dQ − dW 

where dW = PdV is the external work done while dQ = TdS 

dU = TdS − PdV ... (6.1) 

For an adiabatic process 

dQ = 0 

dU = −PdV 

i.e., the work done by the system in an adiabatic process is at the expense of its 

internal energy. 

For an isochoric adiabatic process 

dV = 0 and dQ = 0 dU = 0 or U= constant 

i.e., the internal energy of system remains constant in an isochoric adiabatic process. 

b. Enthalpy 

Enthalpy is an extensive thermodynamical property and is of particular significance. It is 

defined as 

H = U + PV 

For an infinitesimal reversible change, we get 

dH = dU + PdV + VdP 

dH = TdS − PdV + PdV + VdP  (Equation 6.1) 

dH = TdS + VdP ... (6.3) 

(a) For reversible isobaric process 

dP = 0 

dH = TdS = dQ 

i.e., Amount of heat absorbs is equal to change in enthalpy, as in case of isobaric process.  

For an isobaric adiabatic process 

dP = 0 and dQ = 0 

dH = 0 or H = Constant 

i.e., enthalpy remains constant in a reversible isobaric adiabatic process. 

c. Helmholtz Free Energy 

The Helmholtz free energy is also called as ‘Helmholtz function' or ‘Thermodynamic 

Potential at constant volume' and It is defined by the equation 

F = U − TS. 

Since U, T and S and  F  are perfect differential. When a system experiences an 

infinitesimal reversible change from initial equilibrium to final   equilibrium state, the 

Helmholtz free energy changes by an amount given by differentiating the above relation as 
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dF = dU − TdS – SdT 

But dU = TdS − PdV, as shown in the earlier case. 

dF = (TdS − PdV) − TdS − SdT 

dF = −SdT − PdV ... (6.2) 

Equation represent the variation in Helmholtz free energy in an infinitesimal reversible  

process. 

For Reversible isothermal process 

dT = 0 

dF = −PdV or PdV = −dF 

thus, decrease in Helmholtz free energy equal to the work done in a reversible isothermal 

process  

For isothermal isochoric process 

dT = 0 and dV = 0 

dF = 0 or F = Constant 

i.e., during isothermal isochoric process, Helmholtz free energy remains constant. 

d. Gibb’s Free Energy 

This is also known as ‘Gibb's Function' or ‘Thermodynamic Potential at constant 

pressure'. It is defined as 

G = H − TS 

For an infinitesimal reversible process 

dG = dH − TdS − SdT 

But dH = TdS + VdP 

dG = VdP – SdT     ... (6.4) 

For an isothermal isobaric process 

dT = 0 and dP = 0 

dG = 0 or G = Constant 

Thus, Gibbs free energy remains constant in an isothermal isobaric process. 

 

6.2 Relations of Thermodynamics potential and variables  

Because the thermodynamic variables S, T, P, and V may be derived from the four numbers 

U(S,V), F(T,V), H(S, P), and G (P, T) through their differentiations with regard to the 

independent variables linked to them, they are known as thermodynamic potentials. Now let's 

extract them. 
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a. Thermodynamic Potential U (S, V) 

Taking partial derivatives of the intrinsic energy equation (6.1) with respect to variable S, 

and V, we get 

 

These are the relation connecting the internal energy U with the thermodynamic 

variable S, V, T and P. 

Now since 𝑑𝑈 is perfect differential, we must have 

 

This is the first thermodynamic relation of Maxwell. 

b. Thermodynamic Potential F (T, V) 

Taking the partial derivatives of F from equation (6.2), we have 

 

Since 𝑑𝐹 is a perfect differential, we have 

 

 

This is the second thermodynamic relation of Maxwell. 

c. Thermodynamic Potential H (S, P) 

The partial derivatives of H from equation (6.3) are 

 

Since 𝑑𝐻 is a perfect differential, we have 
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This is the third thermodynamic relation of Maxwell 

d. Thermodynamic Potential G (P, T) 

The partial derivatives of G from equation (6.4) are 

 

 

This is fourth thermodynamic relation of Maxwell. 

Thus, the thermodynamical variables S, T, P and V can be written by using equation (6.5), 

(6.7), (6.9) and (6.11) as 

 

These equations (6.13) give the value of thermodynamic variables in terms of 

thermodynamic potentials. 

 

6.3 Applications pf Thermodynamics Potentials and Maxwell’s Equation  

a. Clausius-Clapeyron Latent Heat Equation  

Maxwell's second thermodynamic relation is written as: 

 

Multiplying both sides by T, we have 
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 But, 𝑇∂𝑠 = ∂𝑄 (from second law of thermodynamics). Hence 

 

Hear represents the quantity of heat absorbed or liberated per unit change in volume 

at constant temperature. This mean that at constant temperature the heat absorbed or liberated 

bring out simply a change in the volume of the substance. Therefore, the quantity of heat 

which is absorbed or released at constant temperature must be latent heat, and the explanation 

for the volume change must be a change in condition. Let L be the latent heat when a 

substance with a unit mass changes its volume from V1 to V2 at constant temperature. 

∂Q = L and ∂V = V2 − V1 

Substituting these values in the above expression 

 

This is the Clausius-Clapeyron latent heat equation. 

b. Joule Thompson Effect 

When a gas under a constant pressure is made to pass through an insulated porous-plug to a 

region of lower constant pressure, it suffers a change in temperature. This is called the 'Joule 

- Thomson or Joule-Kelvin effect'. The process is called the 'throttling process'. The change 

in temperature is proportional to the pressure-difference between the two sides of the plug. 

At ordinary temperature, all gases, expect hydrogen and helium, show a cooling effect while 

hydrogen and helium show a heating effect. 

Let us consider 1 mole of gas. Let P1and V1 be its pressure and volume before passing and P2 

and V2 the pressure and volume after passing through the porous plug. The net external work 

done by the gas in passing through the plug is then P2V2 - P1V1. Since there is no heat-

exchange between the gas and its surroundings, this work must come from the internal 

energy of the gas. Thus, if U1 and U2 be the internal energies of the gas before and after 
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passing through the plug, we have from the first law of thermodynamics 

U1 − U2 = P2V2 − P1V1 

Or U1 + P1V1 = U2 + P2V2 

U + PV = constant 

The quantity (𝑈 + 𝑃𝑉) which remains constant during a throttling process, is called the 

enthalpy (H) of the gas. Thus, we may write 

dH = d(U + PV) = 0 dU + PdV + VdP =0 

But dU + PdV = dQ and dQ = TdS (first and second law respectively). Therefore, 

TdS + VdP = 0   …(1) 

Let as assume that the entropy S is the function of variables P and T. Since dS is a perfect 

differential, we have 

 

Substituting this value of dS in equation (1), we get 

       

  (2) 

But dQ = TdS. Therefore,                                         where 𝐶𝑃p                            is the specific heat at constant 

pressure. 

Maxwell's fourth relation  

Therefore equation (2) becomes 

 

Since, the enthalpy H remains constant during throttling process,                       which is 

called the Joule-Thomson coefficient µ. Thus, 

      

                                                                                                             (4) 

Integrating it, we get the temperature-change for finite drop in pressure from P1 to P2 as  
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For ideal Gas:  

For 1 mole of a perfect gas, the equation of state is PV=RT. Differentiating it with respect to 

T, taking P constant, we have 

 

Substituting this value for Joule-Thomson coefficient, we get 

µ = 0       …(3) 

Thus, the Joule-Thomson effect for a perfect gas μ is zero. 

For Real Gas:  

For a van der Waals' gas, we have 

 

Differentiating it with respect to T, taking P constant, we have 

 

 

Since, a and b are very small quantities, we replace 2aV(V − b)2 by 2aV3 in the numerator 
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and ignore 2a(V − b)2 in comparison with RTV3 in the denominator. Then, we get 

        (5) 

Substituting this result in equations (4) and (5), we get 

 

 

The pressure is lower on the emergent side of the porous plug (𝑃2 < 𝑃1). Hence, we may 

write as 

This expression shows the Joule-Thomson effect for real gas.  

 

6.4 Cooling due to adiabatic demagnetization 

In 1926, Debye and Giauque showed theoretically that the temperatures considerably below 

1 K could be obtained by the process known as adiabatic demagnetization of a paramagnetic 

salt (i.e., those substances for which the magnetic susceptibility χ is small, but positive). 

Experimental Method 

There is liquid helium around vessel A, in which the paramagnetic specimen (salt) is 

suspended. Under low pressure, liquid helium placed in Dewar flask D is boiled. Liquid 

hydrogen in a Dewar flask D2 is positioned around it. The helium gas and salt are in contact. 

As shown in figure 6.1, a magnetic field of approximately 30,000 Gauss is applied.  

The specimen (salt) gets magnetized when the magnetic field is switched on. In order to 

guarantee that the sample is thermally isolated, hydrogen gas is initially introduced into A 

and then pumped out using a high vacuum pump. This reduces the heat generated by 

magnetization. The sample monitors the temperature in the intervening period. The magnetic 

field is switched off at this point. The substance undergoes adiabatic demagnetization, which 

reduces its temperature. By wrapping a coaxial solenoid coil around tube A and measuring 

the material's self-inductance and thus its susceptibility at the start and finish of the 
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experiment, the temperature of the specimen is determined.  The phenomena is called 

Magneto-Caloric effect. 

 In 1994, Haas used a double sulfate of potassium and aluminum to produce temperatures as 

high as 0.002 K. Klerk, Stenland, and Gorter used a powder mixture of aluminium and 

chromium alum crystals and lowered the temperature to 0.0014 K. 

 

Fig : 6.1 

Theory 

Then a paramagnetic material placed in a magnetizing field (H), so that its magnetic dipoles 

align in parallel to magnetizing filed. Becouse of alignment of dipole a magnetic moment 

produced per unit volume, which is called intensity of magnetization (I). I is inversely 

proportional to the temperature T of the paramagnetic material and directly proportional to 

the magnetizing field H, based on Curie's law. 

 Thus 

         (1) 

where C is Curie constant of paramagnetic substance. 

If V is the volume of I mole of the substance then intensity of magnetization of I mole of 

paramagnetic substance M = IV 

          (2) 
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Let 1 mole of paramagnetic substance is placed in magnetizing field.  

H. Then its thermodynamic behaviour the substance can be expressed in terms of 

thermodynamic quantities P, V, T and S. In thermodynamic system, increment in in pressure 

P decreases the volume V. correspondingly increase in H results in increase in M. by 

replacing P by –H and V by M in Maxwell's third thermodynamic relation 

          (3) 

  (4) 

         (5) 

Where   

           (6) 

 the specific heat of the substance at constant magnetic field H. Since the process is carried 

out adiabatically (S = constant), we may write for infinitesimal change, 

         (7) 

When field changes from H1 -> H2, temperature change represented by  

        (8) 

Differentiating equation (2) with respect to T at constant H, we get 
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          (9) 

Substituting this value in equation (8), we have 

                  (10) 

Changes in magnetic field from H1 = H to H2 = 0, its effect on temperature  

                             (11) 

The following conclusions can be drawn from the equation (11) 

The temperature of paramagnetic material changes as the magnetizing field is reduced .  

Greater is the initial field H and lower is the initial temperature T, greater is the 

temperature fall ∆T. 

It is to be noted that here CV is the Curie constant per mole. If 1 gm of paramagnetic 

substance is taken, then CV would stand for Curie constant per gm. 

 

6.5 Phase Transitions 

Whenever system parameters like pressure and temperature alter, a phenomenon known as a 

phase transition takes place where there is an abrupt change between thermodynamics 

phases. The presence of singularities (non-analyticities) in functions that represent physical 

variables is the theoretical description of a phase transition, which can be defined as a 

sudden change in macroscopic attributes. An illustration of this is the melting of ice, when 

the system has to be supplied with latent heat, allowing the entropy to increase significantly. 

The amount of water changes quickly when it boils and transforms into vapor. From a 

physics viewpoint, the conflict between the system's (internal) energy E and entropy S, 

which together define its free energy F = E − TS, is what allows a phase transition to occur.  

One of the two terms predominates based on the value of the external factors (such as T), 

with the first term (E) favoring order and the second (S) favoring disorder. Phase shifts can 

be broadly divided into two types based on the degree of singularity in physical quantities, 

as per the standard classification. The transition is of first order when there is a discontinuity 
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in the free energy F's first-order derivative. When there is a discontinuity or divergence in 

the second- or higher-order derivative of the free energy, the transition can be referred as 

continuous. Additionally, phase transitions are frequently referred to by the order of the 

derivative that exhibits a discontinuity or divergence first; for example, a phase transition is 

referred to be second order if the free energy's second-order derivative exhibits a 

discontinuity or divergence first. 

 

6.6 Classification of Phase Transition 

Latent heat is required for most of natural transitions between phases, that occur at constant 

temperature. However, latent heat is not needed for certain phase transitions, such as the 

change of a material from a ferromagnetic to a paramagnetic phase at its Curie temperature, 

the change of a compound from a superconducting to a non-superconducting state, the 

change from liquid He I to liquid He II, etc.  P. Ehrenfest proposed a classification of phase 

transitions and classified them into first and second order phase transitions based on the 

presence of latent heat. 

 

6.7 First order Phase Transitions  

It can  be defined as, changes in Gibbs function with respect to pressure and temperature at 

the transition point. In other words the first derivatives of Gibb's function are discontinuous. 

However, the value of the Gibbs function is the same in both the phases at equilibrium. In 

these cases, as per the transfer of heat there is change in entropy and volume. These changes 

are represented graphically in Figure 6.5. 

 

Fig:  6.2 
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6.8 Second order Phase Transition  

Ehrenfest defined second order phase transitions as those in which the Gibbs function and its 

first derivatives are continuous during the phase transition but the Gibbs function's second 

derivatives are discontinuous. Second order phase transitions can be defined as the 

phenomenon that takes place with no change in entropy and volume at constant temperature 

and pressure. It has been found in case of transition from liquid helium I to liquid helium II, 

that neither a change in volume nor a transfer of heat occur. We refer to these transitions as 

second order phase transitions. Figure 6.2 shows a graphic representation of these 

modifications.  

 

6.9 Clausius Clapeyron Equation and Ehrenfest equations 

Clapeyron in 1834, and Clausius in 1850, deduced an important equation which describes 

conditions governing changes of state, such as melting of solids and boiling of liquids. It 

represented the ‘Clausius-Clapeyron Latent Heat Equation' 

The two isothermals at infinitely close temperatures T and (T+dT), each, should be 

represented by ABCD and EFGH. The portions AB and EF, with reference to Figure 6.2, 

depict the substance in its liquid state. Substance is restricted to its liquid condition at B and 

F. The change between the liquid and vapour states is ongoing along BC and FG, and they 

coexist in balance. The chemical is only in the vapor state at C and G. The chemical is in the 

vapor state from C to D and G to H. Let V1 and V2 be the substance's volumes at F and G, 

respectively, and let P and (P+dP) be the saturated vapour pressures of the liquid at 

temperatures T and (T+dT), respectively. 

Let's sketch two adiabatics that meet the lower isothermal at M and N, respectively, from F 

and G. Consider the following scenario: 1 gm of the material is wrapped around a reversible 

Carnot cycle FGNMF, where it is compressed isothermally along NM and adiabatically 

along MF, and allowed to expand isothermally along FG and adiabatically along GN. 

When a substance entirely transitions from a liquid state at F to a vapour state at G, the 

amount of heat Q1 absorbed along FG is equal to the latent heat of vaporization (L+dL) at 

temperature (T+dT). Furthermore, L, the latent heat at temperature T, is the amount of heat 

Q2 rejected all over the isothermal compression NM. Here, temperature is thought to affect 

latent heat. 
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Fig : 6.3 

Applying the principle of Carnot's 

reversible cycle 

 

The heat converted into work in cycle FGMNF is 

Q1 − Q2 = L + dL − L = dL 

But the work done during the Carnot cycle is given by the area FGMNF, 

which may be treated as a parallelogram. 

Hence, dL (in work unit) = Area FGMNF = FG × perpendicular distance between FG and 

NM 

= (𝑉2 − 𝑉1) × 𝑑𝑃 

Specific volume of vapour and liquid are represented by V2 and V1, and dP  

change in pressure  between FG and NM. 
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Substituting this value of dL in equation (1) 

        (1) 

Clapeyron's latent heat equation represented by eq. (1) . 

Applications 

1. By Rate of changing the pressure effect on melting point.  

When a solid substance change into liquid:  

(i) dP/dt is a positive if 𝑉2 is greater than 𝑉1. Melting point of the   substance 

increase with increase in pressure and vice versa 

(ii) dP/dt  is negative if 𝑉2 is less than V1. Melting point of the 

substance decreases with increasing in pressure or vice-versa. 

For example, in case of melting of ice, volume of water after 

melting is less than volume of ice. Therefore, the melting 

point of ice decreases by increases in pressure.  

 

Self-Assessment 

1. Define thermodynamic potentials? Why they are known as potentials? 

2. What is the physical significance of thermodynamic potentials. 

3. Deduce Maxwell's relations using thermodynamic potentials. 

4. Prove in an isobaric process change in enthalpy is equal to the heat 

transferred. 

5. Prove that work done by the system is equal to decrement in Helmholtz free 

energy. 

6. Four thermodynamic potentials are: 

a) Pressure, Volume, Temperature and Internal energy function 

b) Volume, Pressure,  Internal Energy and Helmholtz function 

c) Internal energy, Helmholtz function, Enthalpy and Gibbs function 

d) None of these. 

7. Saturated vapour pressure’s  specific heat is: 

a) Zero 

b) Positive 

c) Negative 
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d) Sometimes positive sometimes negative. 

8. Paraffin wax contracts on solidification. The melting point of wax will 

a) increase with pressure  

b) decrease with pressure 

c) no change with pressure 

d) decrease linearly with pressure. 

9. The change in each thermodynamic function: 

a) depends on path between initial and final states 

b) is independent of path between initial and final states 

c) is always zero 

d) none of above. 

10. Which thermodynamic function represents the maximum amount of non-

expansion work that can be extracted from a closed system at constant temperature 

and pressure? 

a) Internal Energy (U) 

b) Enthalpy (H) 

c)  Gibbs Free Energy (G)  

d)  Helmholtz Free Energy  
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Chapter 7 

Classical Statistics 

 

7.1 Introduction of classical statistics and theory of radiation 

Classical statistics refers to the branch of statistics that deals with principles and techniques 

derived from the work of mathematicians and statisticians from the 18th and 19th centuries, 

such as Gauss, Laplace, and Fisher. It encompasses foundational concepts like probability 

theory, hypothesis testing, and estimation. Classical statistics typically assumes that data are 

generated from known distributions (e.g., normal distribution) and focuses on frequentist 

inference, where probabilities are interpreted as long-run frequencies of events. 

On the other hand, the theory of radiation pertains to the study of the emission, transmission, 

and absorption of radiation, particularly electromagnetic radiation such as light, radio waves, 

and X-rays. This theory has applications across various scientific disciplines, including 

physics, chemistry, astronomy, and environmental science. It explores how radiation interacts 

with matter, how it propagates through different media, and its implications for phenomena 

ranging from atomic structure to the behavior of stars. 

Together, the application of classical statistics in the theory of radiation involves using 

statistical methods to analyze experimental data related to radiation measurements, infer 

properties of radiation sources, assess uncertainties in measurements, and validate theoretical 

models. This integration allows scientists to make rigorous and quantitative assessments of 

radiation phenomena, contributing to advancements in both fundamental science and 

practical applications such  

In thermodynamics, microstates and macrostates are key concepts that describe the state of a 

system at different levels of detail and abstraction. 

 

7.2 Microstate 

 A microstate refers to a specific, detailed configuration of all the microscopic 

constituents (atoms, molecules, particles) of a system at a particular instant in time. It 

is a snapshot that includes the exact positions and momenta (or velocities) of every 

particle in the system. 

 Microstates are numerous and represent all possible configurations that the system's 

particles can occupy within the constraints of the system's energy, volume, and 

number of particles. 
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 In statistical mechanics, microstates are fundamental because they provide a complete 

description of the system's microscopic state. 

 

7.3 Macrostate 

A macrostate describes the state of a system in terms of macroscopic variables such as 

temperature, pressure, volume, and entropy. These variables are observable and 

measurable properties of the system that do not require knowledge of the exact 

microscopic details. 

 A macrostate corresponds to a large number of microstates that share the same 

macroscopic properties. In other words, it represents a collection or ensemble of 

microstates that are indistinguishable in terms of macroscopic observables. 

 Macrostates are useful because they simplify the description of a system by focusing 

on the average behavior of the system's constituents rather than on their individual 

behaviors. 

 

7.4 Relationship Between Microstates and Macrostates 

 The relationship between microstates and macrostates is central to statistical 

thermodynamics. The macroscopic properties of a system, such as temperature or 

pressure, arise from the statistical average over all possible microstates that are 

consistent with a given macrostate. 

 Statistical mechanics uses this relationship to connect the microscopic behavior 

(described by microstates) with the macroscopic properties (described by macrostates) 

of a system. For example, The average kinetic energy of the gas particle is related to 

its temperature, which can be understood by considering the distribution of velocities 

across all possible microstates. 

 The Boltzmann entropy formula, S=kln (Ω), where Ω is the number of microstates 

corresponding to a particular microstate, quantifies the relationship between 

microstates and macrostates by linking the statistical entropy (macroscopic property) 

to the multiplicity of microstates (microscopic configurations). 

In summary, microstates and macrostates provide complementary perspectives on the state of 

a thermodynamic system: microstates describe detailed configurations of particles, while 

macrostates describe averaged properties that emerge from these configurations. Statistical 

mechanics uses these concepts to explain how macroscopic thermodynamic quantities arise 

from microscopic dynamics. 
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7.5 Elementary Concept of Ensemble 

In the context of statistical mechanics, an ensemble is a theoretical construct used to describe 

the collective behavior of a large number of identical or similar systems that are in the same 

macroscopic state. The concept of an ensemble is fundamental to bridging the gap between 

the microscopic behavior of individual particles (microstates) and the macroscopic properties 

of a system (macrostates). 

Key Concepts: 

a. Ensemble Definition: 

An ensemble represents a collection of many copies of a system that are identical in terms of 

their macroscopic properties (e.g., temperature, pressure, volume). 

Each member of the ensemble is considered to be in a different microstate, reflecting the 

various possible configurations of the system's microscopic constituents (atoms, molecules, 

etc.). 

b. Types of Ensembles 

Microcanonical Ensemble: The ensemble describes a system with fixed volume, energy and 

number of particles and used for studying isolated systems. 

Canonical Ensemble: its defines a system that can exchange energy with a heat bath at 

constant temperature. It is useful for describing systems in thermal equilibrium with a 

reservoir. 

Grand Canonical Ensemble:  Its defines a system that can exchange both energy and particles 

with a reservoir at constant temperature and chemical potential. It is used for systems with 

variable particle numbers, like gases. 

c. Statistical Averages 

The ensemble average of a physical quantity (e.g., energy, pressure) is obtained by averaging 

the corresponding quantity over all microstates weighted by their probabilities. 

Ensemble averages provide a means to connect the statistical distribution of microstates with 

observable macroscopic properties of the system. 

d. Equivalence of Ensembles 

The principle of ensemble equivalence states that in the thermodynamic limit (large number 

of particles), different ensembles (microcanonical, canonical, grand canonical) yield the same 

macroscopic predictions for most physical quantities. 

This equivalence allows different statistical approaches to yield consistent results and 

provides flexibility in choosing the most convenient ensemble for a particular problem. 
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e. Application in Statistical Mechanics 

Ensembles are central to statistical mechanics as they provide a systematic framework for 

calculating thermodynamic properties from microscopic principles. 

They enable predictions of how macroscopic properties (e.g., temperature, pressure) arise 

from the statistical behavior of individual particles, thus linking microscopic dynamics with 

observable phenomena. 

In essence, the concept of an ensemble in statistical mechanics is crucial for understanding 

how statistical averages over many possible microscopic states lead to the emergence of 

macroscopic thermodynamic properties. It provides a powerful tool for describing and 

predicting the behavior of systems consisting of a large number of interacting particles. 

 

7.6 Phase Space  

Phase space in the context of classical mechanics refers to the abstract space in which all 

possible states of a system are represented, each state being determined by the positions and 

momenta (or velocities) of all particles in the system. Here are the key aspects and 

implications of phase space: 

a. Definition and Dimensions 

Phase space is a mathematical space where each point corresponds to a unique state of a 

system. For a system of N particles in three-dimensional space, the phase space is 6N-

dimensional because each particle contributes 6 coordinates (3 for position and 3 for 

momentum). 

The coordinates in phase space are often denoted collectively as {qi, pi}, where qi represents 

the position coordinate and pi represents the momentum coordinate of the i-th particle. 

b. Hamiltonian Dynamics 

In classical mechanics, the evolution of a system's state in phase space is governed by 

Hamilton's equations of motion. These equations describe how the positions and momenta of 

particles change over time in response to the forces acting on them. 

Hamilton's equations are derived from the system's Hamiltonian, which is the total energy 

function of the system expressed in terms of positions and momenta. 

c. Representation of State 

A single point in phase space represents a microstate of the system, specifying the exact 

positions and momenta of all particles at a given instant. 
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The trajectory of a system in phase space traces out a path that represents its evolution over 

time, reflecting how the positions and momenta of particles change as the system moves 

under the influence of internal and external forces. 

d. Statistical Mechanics 

Phase space is also crucial in statistical mechanics, where it extends to include the 

distribution of possible states that a system can occupy. In this context, phase space 

represents all possible microstates that are consistent with the macroscopic properties (e.g., 

temperature, volume) of the system. 

Statistical ensembles (such as microcanonical, canonical, and grand canonical ensembles) are 

defined in phase space, providing a framework for calculating thermodynamic quantities like 

entropy, temperature, and pressure from the statistical distribution of microstates. 

e. Quantum Mechanics 

In quantum mechanics, phase space is generalized to include operators that correspond to 

position and momentum observables, although the concept differs from classical phase space 

due to the principles of quantum uncertainty and wave-particle duality. 

In summary, phase space is a fundamental concept in classical mechanics that provides a 

comprehensive description of a system's state in terms of both its positions and momenta. It 

serves as a crucial tool for analyzing the dynamics of physical systems and for connecting 

microscopic details with macroscopic observations and predictions in both classical and 

statistical mechanics. 

 

Self-Assessment 

1. Define a macrostate and a microstate in the context of statistical mechanics. 

2. How are macrostates and microstates related in statistical mechanics? 

3. What does entropy represent in terms of microstates and macrostates? 

4. Explain why a macrostate can have multiple microstates associated with it. 

5. How does Boltzmann's entropy formula relate to the concepts of macrostates and 

microstates? 

6. In statistical mechanics, a macrostate is defined by: 

A) The specific arrangement of particles in a system 

B) The total energy of the system 

C) The overall properties of a system like temperature and pressure 

D) The number of particles in the system 

7. A microstate refers to: 
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A) A large-scale observable property of a system 

B) A specific configuration of the individual particles in a system 

C) The average kinetic energy of particles in a system 

D) The volume occupied by the system 

8. The entropy of a system is related to: 

A) The number of microstates corresponding to a given macrostate 

B) The average energy per particle in the system 

C) The rate of change of temperature with respect to energy 

D) The density of the system 

9. According to statistical mechanics, increasing the number of microstates 

corresponding to a macrostate generally leads to: 

A) Decrease in entropy 

B) Increase in entropy 

C) No change in entropy 

D) Increase in temperature 

10. The Boltzmann distribution describes the: 

A) Distribution of macrostates in a system 

B) Distribution of microstates in a system 

C) Distribution of energy levels in a system 

D) Distribution of pressure and volume in a system 
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Chapter 8 

Thermodynamic Probability 

 

8.1. Thermodynamic Probability 

As the section on atoms, molecules, and probability has demonstrated, we need to establish a 

generic method for assessing whether the final state is more likely than the initial state in 

order to forecast whether a chemical change is spontaneous or not. The thermodynamic 

likelihood, denoted by the number W, can be utilized for this purpose. The number of 

different microscopic configurations that lead to the same macroscopic state is known as W. 

After thinking about a few instances, the importance of this concept becomes clearer.  

A crystal with just eight atoms at absolute zero temperature is shown in Figure 8.1a. Assume 

that a tiny amount of energy is added to cause one of the crystal's atoms to vibrate, thus 

raising the temperature a little. Since we could provide the energy to any one of the eight 

atoms, there are eight methods in which we could accomplish this. The eight options are 

displayed in Figure 8.2b. 

 

The thermodynamic probability W of an eight-atom crystal at three distinct temperatures is 

shown in Figure 8.1. (8.1 a) There is exactly one possible arrangement for the crystal at 0 K, 

ensuring that W = 1. (8.1 b) Eight equally likely configurations are available if sufficient 

energy is applied to cause any one of the atoms to vibrate (color), and W = 8. (8.1 c) Two 

distinct atoms can vibrate simultaneously (bright color) or one atom can have all the energy 

(dark color) if the energy is doubled. Compared to earlier, there are a lot more equally likely 

combinations (W = 36). 

We state that W = 8 for the crystal at this temperature since all eight scenarios point to the 

crystal having the same temperature. It is important to acknowledge that the crystal will not 
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remain in any of these eight configurations indefinitely. Every atom will continuously 

exchange energy with every other atom, making each of the eight configurations equally 

likely. 

Now let's add another exact equal amount of energy to the first, so that there is just enough to 

cause the vibrations of two molecules. This energy can be allocated to the eight atoms in 36 

distinct ways (Figure 8.3 c). For the crystal at this second temperature, we state that W = 36. 

Any one of the 36 potential configurations has an equal chance of containing the crystal since 

energy is constantly moving from one atom to another. 

Our eight-atom crystal at absolute zero serves as a third illustration of W. There is only one 

feasible configuration, and W = 1, since there is no energy to be transferred between atoms. 

This holds true for both the hypothetical crystal and, most likely, a real crystal with a high 

number of precisely organized atoms at absolute zero. 

 

In Figure 8.2 Heat transfer and likelihood of thermodynamics. Since there are many more 

ways to distribute 64 vibrational energy units among 200 atoms than there are to distribute 64 

units among just 100 atoms, when two crystals—one containing 64 units of vibrational 

energy and the other (at 0 K) containing none—come into contact, the 64 units of energy will 

distribute themselves over the two crystals. 

We can determine the degree of likelihood that certain situations have over others by using 

the thermodynamic probability W. Examine the heat transfer between crystals A and B, as 

depicted in Figure 16.5.216.5.2. We'll assume that there are 100 atoms in every crystal. 

Crystal B is initially at zero degrees Celsius. With 64 energy units—enough to cause 64 

atoms to vibrate—Crystal A has a greater temperature. The molecules of A lose energy while 

those of B gain energy when the two crystals are brought together, resulting in an equal 

distribution of the 64 energy units between the two crystals. 

The 64 energy units are split among 100 atoms in the initial state. Based on calculations, 
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there are 1.0 × 1044 possible ways to create this distribution. Therefore, 1.0× 1044 is the initial 

thermodynamic probability, or W1. The 100 crystal atoms A constantly trade energy with 

each other and quickly move from one of these 1.0 × 1044 configurations to another. There is 

an equal chance of discovering the crystal in any of the 1.0 × 1044 configurations at any given 

time. 

The energy can disperse over twice as many atoms when the two crystals come into contact. 

There is an exponential increase in the number of conceivable configurations; W2, the 

thermodynamic probability for this new state, is 3.6 × 1060. There is an equal possibility for 

each of these 3.6 × 1060 combinations to occur in the ongoing shuffling of energy among the 

200 atoms. But only 1.0 × 1044 of these match the scenario when crystal A contains all of the 

energy. As a result, the likelihood that the heat flow will reverse and all of the energy will 

return to crystal A is 

 

Stated differently, the ratio W1 to W2 indicates the proportional likelihood of discovering the 

system in its initial state as opposed to its end one.  

This illustration demonstrates how W can be used as a broad standard to determine whether 

or not a reaction is spontaneous. Moving from a condition where W is less to a state where W 

is larger correlates to moving from a less probable to a more probable molecular scenario. 

Stated differently, W rises in the event of an unplanned shift.  

Predicting whether a response will be spontaneous or not can be solved if a method for 

computing or measuring the start and final values of W can be found. The response will 

happen on its own if W2 is higher than W1. This approach to spontaneous processes is sound 

in theory, but it proves to be exceedingly difficult to implement in real life. W values for 

actual samples of matter are on the order of 101024, making them challenging to work with 

(compared to 200 atoms in the example of Figure 2). However, because log 10x = x, the 

logarithm of W is only on the order of 1024.  

This is more manageable, and chemists and physicists use a quantity called the entropy which 

is proportional to the logarithm of W. 

 This way of handling the extremely large thermodynamic probabilities encountered in real 

systems was first suggested in 1877 by the Austrian physicist Ludwig Boltzmann (1844 to 

1906). The equation 
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…………….(1) 

is currently inscribed on Boltzmann's tombstone. As one might expect, the proportionality 

constant k is also known as the Boltzmann constant. It can be expressed as the Avogadro 

constant NA divided by the gas constant R: 

…………………..(2) 

therefore rather than the gas constant per mole, we might think of it as the gas constant per 

molecule. The Boltzmann constant k has a value of 1.3805 × 10–23 J K–1 in SI units. In 

Equation 1, the sign ln represents a natural logarithm, or a logarithm to the base e. 

Considering that the formula relates base e and base 10 logarithms. 

 

Converting from one to the other is simple. In base-10 logarithms, equation 1 thus becomes 

S=2.303k log W 

 

8.2. Maxwell-Boltzmann Distribution Law 

The Maxwell-Boltzmann distribution is a fundamental concept in statistical mechanics that 

describes the distribution of speeds (or velocities) of particles in a gas at a given temperature. 

It provides insights into the statistical behavior of particles based on their kinetic energies and 

the principles of classical mechanics. Here’s an explanation of the Maxwell-Boltzmann 

distribution: 

a. Assumptions and Context 

Ideal Gas Assumption: The Maxwell-Boltzmann distribution applies to an ideal gas, where 

particles (atoms or molecules) are point masses that do not interact except through elastic 

collisions. 

Thermal Equilibrium: The gas is assumed to be in thermal equilibrium, meaning all particles 

have the same temperature T. 

b. Distribution Function 

The distribution function f(v) gives the probability density of finding a particle with speed v 

in the gas. 

For a three-dimensional system, the Maxwell-Boltzmann distribution function is  
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Where m, v, mass and speed of the particle, KB is Boltzmann’s constant and T is the 

temperature of the gas. 

c. Applications 

Thermodynamics: The Maxwell-Boltzmann distribution is foundational in understanding the 

relationships between temperature, kinetic energy, and the statistical distribution of particles 

in thermal equilibrium. 

Spectroscopy and Kinetics: It is used in various fields such as spectroscopy (to interpret 

Doppler broadening of spectral lines) and chemical kinetics (to model reaction rates based on 

collision frequencies). 

Gas Dynamics: In studies of gas flow and dynamics, the distribution helps predict particle 

velocities and their impact on transport properties. 

 

8.3. Partition Function 

The partition function Z is a fundamental concept in statistical mechanics that plays a central 

role in calculating thermodynamic properties of a system, such as entropy, free energy, and 

average energy. It encapsulates the statistical distribution of the system's microstates in phase 

space and connects microscopic details with macroscopic observables. Here's an explanation 

of the partition function and its significance: 

Definition: The partition function Z is defined differently depending on whether the system is 

in classical statistical mechanics or quantum statistical mechanics. 

a. Classical Partition Function  

For a classical system of N particles in thermal equilibrium with a heat bath at temperature T, 

the partition function Z is given by: 

 

Where,  

 is the inverse temperature. 

H ({qi, pi}) is the classical Hamiltonian function which is depends on the positions {qi} and 

momenta {pi} of all particles. 

dT is the phase space volume element over all possible microstates of the system 

b. Quantum Partition Function 

For a quantum mechanical system, the partition function Z is typically expressed as a trace 

over the quantum states of the system. 
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Where,  is the Hamiltonian operator of the system, and Tr denotes the trace operation over 

the Hilbert space of quantum states. 

 

8.4. Significance and Applications 

1. Thermodynamic Properties: The partition function allows calculation of various 

thermodynamic properties using ensemble averages. For instance, the Helmholtz free energy 

F, entropy S, internal energy U, and other quantities can be derived from Z. 

2.  Connection to Observables: Physical observables such as pressure, temperature, and 

magnetization can be related to derivatives of the partition function with respect to external 

parameters (like volume, magnetic field). 

3. Statistical Mechanics: Z provides a bridge between microscopic details (microstates) and 

macroscopic observations (thermodynamic quantities), enabling the applications of statistical 

mechanics to describe and predict system behaviour. 

 

Self-Assessment 

1. What is a blackbody radiator according to the Classical Theory of Radiation? 

2. State Planck's law of blackbody radiation and its significance. 

3. Explain the concept of the Stefan-Boltzmann law and its mathematical expression. 

4. What is the Ultraviolet Catastrophe problem in the context of the Classical Theory of 

Radiation?How does Wien's displacement law relate to the temperature of a 

blackbody radiator? 

5. Which of the following is a state function for an ideal gas? 

A) Heat capacity at constant pressure (Cp) 

B) Work done during an isothermal process (Wisothermal) 

C) Internal energy (U) 

D) Heat transferred during an adiabatic process (Qadiabatic) 

6. The equation of state for an ideal gas relates: 

A) Pressure, volume, and temperature 

B) Heat capacity, entropy, and temperature 

C) Work done, heat transferred, and pressure 

D) Kinetic energy, potential energy, and internal energy 
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7. Which thermodynamic function remains constant for an ideal gas during an adiabatic 

process? 

A) Temperature (T) 

B) Pressure (P) 

C) Volume (V) 

D) Entropy (S) 

8. The heat capacity at constant pressure (Cp) of an ideal gas depends on: 

A) Temperature only 

B) Pressure only 

C) Volume only 

D) Both temperature and volume 

9. The concept of negative temperature arises due to: 

A) Decreasing energy levels at higher temperatures 

B) Anomalies in the behavior of gases at extremely low temperatures 

C) Systems where energy distribution follows a Boltzmann distribution 

D) A population inversion in energy states 
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Chapter 9 

Thermodynamic Functions 

 

9.1. Thermodynamic Functions of an Ideal Gas 

Thermodynamic functions of an ideal gas can be derived using statistical mechanics, 

specifically by leveraging the partition function and ensemble theory. Here's a breakdown of 

the key thermodynamic functions for an ideal gas: 

a. Internal Energy U 

The internal energy U of an ideal gas is the total energy of the gas due to the motion of its 

particles. For an ideal gas, which consists of non-interacting point particles, the internal 

energy depends solely on the temperature T and is given by: 

U = N kBT 

Where, N is the number of the particles, kB is the Boltzmann’s constant and T is the 

temperature. 

b. Helmholtz Free Energy F 

The Helmholtz free energy F represents the thermodynamic potential that accounts for both 

the internal energy of the system and the entropy S. It is defined as:  

F= U-TS 

For an ideal gas, where entropy S can be derived from statistical mechanics as S 

 

The Helmholtz free energy simplifies to: 

 

Where V is the volume of the gas, m is the mass of the particle, and h is Planck’s constant. 

c. Entropy S  

The entropy S of an ideal gas can be derived using the Boltzmann entropy 

formula:  

This expression accounts for the logarithm of the number of microstates accessible to the 

system, reflecting the disorder or randomness of the gas. 

d. Pressure P 

The pressure P of an ideal gas can be obtained from the Helmholtz free energy F through the 
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relation:  

Substituting F  

This result is consistent with the ideal gas law PV = NkBT. 

e. Chemical potential μ  

For an ideal gas in the grand canonical ensemble (where the number of particles N, volume 

V, and temperature T are all allowed to fluctuate) , the chemical potential μ is related to the 

number of particles N by : 

 

This equation describes the how the chemical potential depends on the temperature and 

volume of the gas. 

Conclusion 

Thermodynamic functions such as internal energy U, Helmholtz free energy F, entropy S, 

pressure P, and chemical potential μ for an ideal gas are derived from statistical mechanics 

using principles such as the partition function and ensemble theory. These functions provide 

a comprehensive framework for understanding and predicting the behavior of ideal gases 

under various conditions, from simple temperature changes to more complex scenarios 

involving volume and particle number fluctuations. 

 

9.2. Classical Entropy Expression 

For a classical system in thermal equilibrium with a heat bath at temperature T, The entropy 

S can be expressed as : 

 

Where, kB is Boltzmann’s constant, Pi is the probability of the system being in microstate i. 

In terms of the  partition function Z and the probility Pi of microstate I, the entropy can also 

be written as : 

 

Derivation Steps:  

Partition Function Z :  

The partition function sums over all possible microstates of the system:  
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Where Ei is the energy of microstate I, and = . 

Probability Pi : The probability of system being in microstate I is given by : 

 

Entropy expression: Using the definition of entropy  

 

 

Simplifying gives:  

 

Where,   is the average energy of the system. 

Interpretation and Application: 

Microcanonical Ensemble: In the Microcanonical ensemble (fixed E, V, N), the entropy S 

relates directly to the multiplicity of microstates accessible to the system at a given energy. 

Canonical Ensemble: In the canonical ensemble (fixed T, V, N), the entropy S characterizes 

the distribution of particle over energy states as influenced by temperature. 

Statistical Mechanics: The classical entropy expression connects microscopic details 

(microstates) with macroscopic thermodynamic properties (entropy), providing a statistical 

basis for understanding the behavior of classical system in equilibrium. 

Limitations: 

The classical entropy expression assumes that particles are distinguishable and do not obey 

quantum statistics like Bose-Einstein or Fermi-Dirac statistics. 

It applies to systems where quantum effects can be neglected, such as macroscopic systems at 

high temperatures. 

In summary, the classical entropy expression in statistical mechanics quantifies the disorder 

or randomness of a classical system by averaging over all possible microstates weighted by 

their probabilities. It is a fundamental concept in understanding the thermodynamic 

properties of classical systems and forms the basis for deriving other important 

thermodynamic functions and relationships. 

 

 



91  

9.3. Gibbs Paradox  

The Gibbs paradox refers to a conceptual issue in classical thermodynamics regarding the 

calculation of entropy for identical particles in an ideal gas. It revolves around the apparent 

contradiction between the classical definition of entropy and our intuitive understanding of 

indistinguishable particles. Here's a detailed explanation of the Gibbs paradox: 

Classical Definition of Entropy: 

In Classical thermodynamic, entropy S is defined using Boltzmann’s entropy formula: 

S = kB ln Ὠ 

Where kB, and Ὠ  represent Boltzmann’s constant, number of microstates corresponding to a 

given macrostate. 

Ideal gas assumption:  

An ideal gas is composed of a large number of identical particles (atoms or molecules) that 

are assumed to be indistinguishable and non-interacting in classical thermodynamics. 

The Paradox  

Calculation of entropy: For an ideal gas composed of n identical particles, the classical 

entropy Sclassical  would be :  

 

 

Where V is the volume of the gas, t is the temperature, m is the mass of a particle, and h is 

Planck’s constant. 

Gibbs’ calculation: If we consider the entropy of n distinguishable particles, each 

contributing  

 

Contradiction: There is a NkB term difference between Sclassical and Snaive. This discrepancy 

arises because the classical calculation treats particles as distinguishable, which contradicts 

the fundamental quantum mechanical principle that identical particles are indistinguishable. 

Resolution and understanding: Statistical Mechanics Perspective : In statistical mechanics, 

the correct calculation of entropy for identical particles (indistinguishable in nature) must 

account for this  in distinguishability. 
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Quantum Mechanical Explanation: Quantum mechanics provides the correct framework to 

address the Gibbs paradox. According to quantum statistical ( Bose-Einstein or Fermi- 

Dirac), identical particle are subject to statics that preserve their in distinguishability. 

Symmetry factor : The correct entropy calculation involves dividing by a symmetry factor to 

account for in distinguishability. For example, for N identical particles, the correct entropy 

should account for N! Permutations of the particles. 

Physical Interpretation : The resolution of the Gibbs paradox underscores the importance of 

quantum statistics in accurately describing the behavior of identical particles, particularly at 

low temperatures or hugh densities where quantum effects become significant. 

Conclusion:The Gibbs paradox highlights a fundamental misunderstanding when applying 

classical thermodynamics to systems of indistinguishable particles. It emphasizes the 

necessity of quantum statistical mechanics for accurately describing entropy and other 

thermodynamic properties of systems involving identical particles, thereby reconciling 

classical definitions with quantum mechanical principles. 

 

9.4. Sackur-Tetrode Equation 

The Sackur-Tetrode equation is an important result in statistical mechanics that provides an 

expression for the entropy S of an ideal gas in terms of its thermodynamic variables. This 

equation is particularly notable because it extends the classical entropy expression for ideal 

gases to include quantum mechanical effects, such as the discrete energy levels of particles 

and the indistinguishability of particles obeying quantum statistics. 

Expression of the Sackur-Tetrode Equation 

For N particles in a volume V at temperature T, the Sackur-Tetrode equation is given by: 

 

Here, S is the entropy of the system; m is the mass of the particle, kB is the Boltzmann’s 

constant, h is the Planck constant. 

Key Points: 

Quantum Effects: The Sackur-Tetrode equation incorporates quantum effects by considering 

the discrete energy levels of particle. It includes a correction to the classical entropy formula 

to account for these quantum states. 

In distinguishability: It respects the in distinguishability of particles, which is crucial in 

quantum statistics. For identical particles, this correction ensures that the entropy calculation 
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is consistent with quantum mechanics. 

Temperature Dependence: The entropy S depends logarithmically on temperature T. This 

dependence reflects the statistical distribution of particles energies at different temperatures. 

Volume Dependence: The entropy also dependence on the volume V of the syste. This 

reflects the phase space available to the particles, which influences their entropy. 

Application and Context  

Statistical Mechanics : The Sackur- Tetrode equation is derived from statistical mechanics, 

particularly from considerations of the partition function and the density of states in phase 

space. 

Ideal Gas Limit : In the classical limit (high temperature or large volume), the sackur-Tetrode 

equation reduces to the classical entropy expression, demonstrating its consistency with 

classical thermodynamics. 

Law of Equipartition of Energy (with proof)  

The Law of Equipartition of Energy is a fundamental concept in classical statistical 

mechanics that states how energy is distributed among different degrees of freedom in a 

system at thermal equilibrium. Let's delve into the law itself, its proof, applications to 

specific heat, and its limitations.  

 

9.5. Law of Equipartition of Energy 

The law of Equipartition of energy states that for a system in thermal equilibrium at 

temperature T, each quadratic degree of freedom (e.g.,, each term in the Hamiltonian that 

depends quadratically on a coordinate or momentum) contributes kBT to the average energy 

of the system. 

Proof Outline  

Consider a single degree of freedom 

Let’s denote a generalized coordinate as q and its conjugate momentum as p. 

The energy associated with this degree of freedom is E = + k 2  

Where m is the mass of the particle, k is the force constant, p = m , and  i9s the velocity. 

Canonical Ensemble:  

The system is in contact with a heat reservoir at temperature T, Described by the canonical 

ensemble. 
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The probability distribution of the system’s states in phase space is governed by the 

Boltzmann distribution: 

 

 

 

Limitations 

Quantum Effects: The Law of Equipartition of Energy assumes classical particles with 

continuous energy levels. In reality, at low temperatures or in small systems, quantum effects 
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such as discrete energy levels and quantum statistics (Fermi-Dirac or Bose-Einstein statistics) 

must be considered. This can lead to deviations from the equipartition theorem. 

Non-Quadratic Terms: Degrees of freedom that do not follow quadratic dependencies (like an 

harmonic potentials) may not obey the Law of Equipartition of Energy. Higher-order 

corrections to the energy distribution need to be considered in such cases. 

Phase Transitions: Near phase transitions or critical points, the behavior of specific heat can 

deviate significantly from the predictions of the equipartition theorem, requiring more 

sophisticated models to describe the system accurately. 

In summary, while the Law of Equipartition of Energy provides a useful framework for 

understanding the distribution of energy in classical systems, its application is limited under 

certain conditions where quantum effects or non-ideal behavior dominate. Understanding 

these limitations is crucial for accurately modeling and predicting the thermodynamic 

properties of real-world systems. 

 

9.6. Thermodynamic function of a Two Energy Level System  

Let us explore the thermodynamic function of simple system of two energy levels E1 and E2, 

where E2>E1. 

Partition Function Z : The partition function Z for a system with two energy levels is the sum 

of Boltzmann factors over all possible states: 

 

Internal Energy U: The internal energy U is the average energy of the system 

 

Helmholtz Free Energy F :The Helmholtz free energy F represents the thermodynamic 

potential that determins the equilibrium state of the system: 

 

Substituting the expression for Z: 

 

Entropy S: The entropy S characterizes the disorder or randomness of the system: 
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S =  

Alternatively, using the partition function Z: 

S = kB (ln Z +  

Specific Heat Capacity: Heat Capacity at constant Volume CV 

The heat capacity at constant volume CV measures the amount of heat required to change the 

temperature of the system: 

 

Physical Interpretation  

Energy Levels: The system is characterized by two discrete energy levels E1 and E2, with 

E2>E1. 

Temperature dependence: Thermodynamic functions vary with temperature T due to the 

Boltzmann factor  in the partition function. 

Entropy and free energy: Entropy S and free energy F provide information about the system’s 

equilibrium and the availability of states at a given temperature. 

Haet capacity: Cv reflects how the internal energy U changes with temperature, indicating the 

system’s response to thermal fluctuations. 

Limitations: 

This model assumes two discrete energy levels, which is a simplification. Real systems often 

have continuous energy distributions or more complex energy landscapes. 

Quantum effects are not explicitly considered in this classical treatment. For very low 

temperatures or small systems, quantum mechanical effects may become significant, 

requiring a quantum statistical mechanics approach. 

In summary, the thermodynamic functions of a two-energy levels system provide a 

foundational understanding of how energy, entropy, and free energy behave in simple, 

discrete energy level systems. They serve as a starting point for understanding more complex 

systems and their thermodynamic properties. 

 

9.7. Negative Temperature  

Negative temperature is a concept in thermodynamics and statistical mechanics that describes 
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a state of a system where the temperature, as defined by thermodynamic parameters, is 

negative on the Kelvin scale. This concept can be initially counterintuitive but is well-defined 

within the framework of statistical mechanics. 

Definition and Concept 

Temperature Scale: In thermodynamics, temperatures typically measured on the Kelvin scale, 

where T 0 kelvin. Negative temperature does not imply temperatures below absolute zero in 

the traditional sense. 

Thermodynamic Definition: 

Negative temperature is defined based on how the entropy S of a system changes with energy 

E:  

If entropy increases with energy, T is positive: if entropy decreases with energy, T is 

negative. 

Population inversion: System with negative temperature has a higher population of particles 

in higher energy states compared to lower energy state. This phenomenon is known as 

population inversion. 

The probability distribution of particles in negative temperature behaviour. At certain 

conditions, the higher energy spin states can become more populated then lower energy 

states. 

Examples and Physical Interpretation 

Spin systems: Nuclear spins in a magnetic field can exhibit negative temperature behaviour. 

At certain conditions, the higher energy spin states can become more populated than lower 

energy states. 

Particle Systems: Some systems, like certain laser-cooled atomic system, can exhibit 

effective negative temperature due to the way energy states are populated under certain 

experimental conditions. 

Mathematical Description: Mathematically, negative temperature is described by a negative 

value of . This implies that the system’s entropy increases with increasing energy. 

Limitations and Context:  

Statistical Mechanics Framework: Negative temperature is a concept derived from statistical 

mechanics and does not contradict the laws of thermodynamics. It is a valid state with in this 

theoretical framework. 

Physical Meaning: Negative temperature does not imply that particles have negative kinetic 

energy. Instead, it describes the distribution of particles among energy states. 
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Rare in Nature: Natural occurrences of negative temperature states are rare and typically 

observed under carefully controlled laboratory conditions where energy distributions are 

manipulated. 

Conclusion 

Negative temperature is a fascinating concept in thermodynamics and statistical mechanics 

that challenges our intuitive understanding of temperature. It describes a state where entropy 

increases with energy, leading to a higher population of particles in higher energy states. 

Understanding negative temperature involves grasping its statistical mechanics basis and the 

implications for energy distributions in physical systems. 

 

Self-Assessment  

1. What does the Maxwell-Boltzmann distribution law describe, and what are its key 

features? 

2.  Define the partition function in statistical mechanics and explain its significance in 

calculating thermodynamic properties. 

3. Discuss the thermodynamic functions of an ideal gas and how they relate to the 

microscopic properties of gas molecules. 

4. What is the classical entropy expression, and how does it relate to the number of 

microstates in a system? 

5. Explain the Gibbs paradox and its implications for the statistical interpretation of 

entropy. 

6. According to the Classical Theory of Radiation, the energy radiated by a blackbody 

per unit area per unit time is proportional to: 

A) Temperature of the blackbody 

B) Surface area of the blackbody 

C) Square of the temperature of the blackbody 

D) Cube of the temperature of the blackbody 

7. The distribution of electromagnetic radiation emitted by a blackbody at a given 

temperature follows: 

A) Planck's distribution law 

B) Wien's displacement law 

C) Stefan-Boltzmann law 

D) Rayleigh-Jeans law 
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8. According to the Stefan-Boltzmann law, the total power radiated per unit area by a 

blackbody is proportional to: 

A) Fourth power of its temperature 

B) Square of its temperature 

C) Cube of its temperature 

D) Inversely proportional to its temperature 

9. The Ultraviolet Catastrophe problem in the Classical Theory of Radiation refers to: 

A) The excessive radiation emitted by stars in the ultraviolet spectrum 

B) The divergence of the predicted radiation intensity at short wavelengths 

C) The inability to explain the observed radiation spectrum of blackbodies 

D) The lack of understanding of radiation emission from hot objects 

10. According to Wien's displacement law, the wavelength of maximum intensity emitted 

by a blackbody is inversely proportional to: 

A) Its temperature 

B) The speed of light 

C) Planck's constant 

D) Boltzmann's constant 
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Chapter 10 

Theory of Radiation 

 

10.1. Classical Theory of Radiation: 

The classical theory of radiation refers to the understanding of electromagnetic radiation 

based on classical electrodynamics, primarily developed before the advent of quantum 

mechanics. This theory was pivotal in explaining various phenomena related to light and 

radiation, including blackbody radiation and the behavior of electromagnetic waves. 

Properties of Thermal Radiation 

 Emissivity: Emissivity (ϵ) of a surface quantifies its ability to emit thermal radiation 

compared to a blackbody at the same temperature. It ranges from 0 to 1, where 0 

indicates perfect reflectivity (no emission) and 1 indicates perfect blackbody 

behavior. 

 Absorptivity: Absorptivity (α) is the complement of reflectivity and measures the 

fraction of incident radiation that a surface absorbs. 

 Reflectivity: Reflectivity (ρ) is the fraction of incident radiation that is reflected by a 

surface. 

 Transmissivity: Transmissivity (τ) is the fraction of incident radiation that passes 

through a material without being absorbed or reflected. 

 Directionality: Thermal radiation is omnidirectional, meaning it is emitted in all 

directions. The intensity of radiation varies with the angle of emission, following 

Lambert's cosine law. 

 Temperature Dependence: The intensity and spectral distribution of thermal 

radiation depend strongly on the temperature of the emitting body. Higher 

temperatures emit radiation with shorter wavelengths and higher intensities according 

to Planck's law. 

 

10.2. Blackbody Radiation 

It refers to the radiation emitted by a perfect black body, this is an ideal physical body that 

absorbs all incident radiation without any reflection. This phenomenon is crucial in 

understanding many aspects of thermal radiation and has significant implications in physics, 

including the development of quantum mechanics and modern thermodynamics. Here are the 

key aspects of blackbody radiation:  
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All normal matter at temperatures above absolute zero emits electromagnetic radiation, which 

represents a conversion of a body's internal thermal energy into electromagnetic energy, and 

is therefore called thermal radiation. Conversely, all normal matter absorbs electromagnetic 

radiation to some degree. An object that absorbs ALL radiation falling on it, at all 

wavelengths, is called a blackbody. When a blackbody is at a uniform temperature, its 

emission has a characteristic frequency distribution that depends on the temperature. This 

emission is called blackbody radiation. 

A room temperature blackbody appears black, as most of the energy it radiates is infra-red 

and cannot be perceived by the human eye. Because the human eye cannot perceive light 

waves at lower frequencies, a black body, viewed in the dark at the lowest just faintly visible 

temperature, subjectively appears grey, even though its objective physical spectrum peaks in 

the infrared range. When it becomes a little hotter, it appears dull red. As its temperature 

increases further it becomes yellow, white, and ultimately blue-white. 

 

Figure 10.1: Blackbody Radiation. When heated, all objects emit electromagnetic radiation 

whose wavelength (and color) depends on the temperature of the object. A relatively low-

temperature object, such as a horseshoe forged by a blacksmith, appears red, whereas a 

higher-temperature object, such as the surface of the sun, appears yellow or white 

 

Figure 10.2: Graphic representation of spectral distribution of blackbody radiation at different 

temperatures. The Stefan-Boltzmann’s Law is observed as the increase in the emission 
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amplitude with increasing temperature and the Wien’s Displacement Law is observed as the 

shift to smaller wavelength with increasing temperature.  

 

10.3. Characteristics of Blackbody Radiation 

Spectral Distribution: The intensity of radiation emitted by a blackbody depends on its 

temperature T and wavelength λ. At a given temperature, the spectral distribution of  

blackbody radiation follows Planck’s law: 

 

Where,  

o h Planck’s constant (6.626x 10-34 J.s), 

o c is the speed of light (3.00x108 m/s), 

o kB is the Boltzmann’s constant (1.38x10-23 J/K), 

o T is the temperature in kelvin 

Wien’s Displacement Law: This law relates the peak wavelength λmax of emitted radiation to 

the temperature T of the blackbody : 

λmax = b 

Where b is Wien’s displacement constant (b 2.897x10-3 m. K). 

Stefan-Boltzmann Law :This law describes the total power radiated per unit surface are A of  

a blackbody: 

P= σAT4 

Where σ is the Stefan-Boltzmann constant (σ 5.67x10-8 W/m2.K4) 

Key Properties and Concepts 

Perfect Absorber: A blackbody absorbs all incident radiation and reflects none. This 

property makes it an idealized object for studying thermal radiation. 

Universal Nature: Blackbody radiation is independent of the material of the blackbody and 

only depends on its temperature. This universality was a significant puzzle in classical 

physics, leading to the development of quantum theory. 

Ultraviolet Catastrophe: Before quantum mechanics, classical theory predicted an infinite 

energy density at short wavelengths (the ultraviolet catastrophe), which was resolved by 

Planck's quantization hypothesis. 
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Applications 

 Infrared Astronomy: Studying the thermal emission of celestial bodies using 

telescopes sensitive to infrared radiation. 

 Thermography: Using infrared cameras to measure temperature distribution in 

various applications, including medicine, building inspections, and industrial 

processes. 

 Climate Science: Understanding the Earth's energy balance and the role of 

greenhouse gases in radiative forcing. 

Material Characterization: Analyzing the thermal properties of materials based on their 

emissivity and spectral characteristics. 

Conclusion 

Blackbody radiation is a fundamental concept in physics that describes the emission of 

electromagnetic radiation from an idealized object that absorbs all incident radiation. Its 

theoretical foundation in quantum mechanics revolutionized our understanding of radiation 

and laid the groundwork for many modern applications and scientific advances. 

Understanding blackbody radiation is crucial for various fields, from astronomy to materials 

science, and continues to be a cornerstone in the study of thermal physics and 

electromagnetic waves. 

 

10.4. Kirchhoff’s law 

Kirchhoff's law refers to two fundamental principles in physics related to the behavior of 

electromagnetic radiation and thermal equilibrium. These principles were formulated by the 

German physicist Gustav Kirchhoff in the mid-19th century and have wide-ranging 

applications in fields such as optics, thermodynamics, and astrophysics. 

 

10.5. Kirchhoff's First Law (Radiation Law) 

Kirchhoff's first law, also known as the radiation law, states: 

"At thermal equilibrium, the ratio of the emissive power to the absorptive power of a surface 

is the same for all bodies at a given temperature and wavelength." 

This law implies that for a body in thermal equilibrium, the emissivity  (λ, T) of its surface 

equals its absorptivity  (λ, T) at a particular wavelength λ and temperature T. 

mathematically, it can be expressed as: 

 (λ, T) =  (λ, T) 
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Emissivity ( ): Emissivity of a surface is the ratio of the energy radiated by the surface to 

that radiated by a perfect blackbody at the same temperature and wavelength, It varies with 

temperature and wavelength and ranges from 0 to 1. 

Absorptivity ( ): Absorptivity of a surface is the fraction of incident radiation absorbed by 

the surface. Like emissivity, it also varies with temperature and wavelength and ranges from 

0 to 1. 

 

10.6. Kirchhoff’s Second Law (Displacement Law) 

Kirchhoff’s second law, often referred to as the displacement law, relates to the spectral 

distribution of black body radiation. It states: 

“The ratio of the emissive power of a black body to its absorptivity is the same for all bodies 

at the same temperature and for all wavelengths”. 

Mathematically, it can be expressed as: 

= f(λ, T) 

Where  is the emissive power of the blackbody at wavelength λ and temperature 

T. 

 is absorptivity of the blackbody at wavelength λ and temperature T, and f(λ, T) is a 

universal function of wavelength and temperature. 

 Kirchhoff's second law is fundamental in understanding the spectral distribution of 

radiation emitted by blackbodies at different temperatures, as described by Planck's 

law. 

 

Applications and Implications 

 Thermodynamics: Kirchhoff's laws are essential in the study of thermal radiation, 

helping to explain and predict the behavior of heat transfer and radiation emission in 

systems at thermal equilibrium. 

 Optics: These laws are crucial in optics for understanding the interaction of light with 

materials, such as in the design of coatings and thermal radiation shields. 

 Astrophysics: Used extensively in astrophysics to analyze the radiation emitted by 

stars and other celestial bodies, aiding in determining their temperatures and 

compositions. 

In summary, Kirchhoff's laws provide fundamental principles governing the interaction of 
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electromagnetic radiation with materials and are pivotal in fields ranging from 

thermodynamics to astrophysics. They play a critical role in understanding and predicting the 

behavior of radiation in equilibrium conditions and have broad applications across scientific 

and engineering disciplines. 

 

10.7. Stefan-Boltzmann law: Thermodynamic proof 

The Stefan- Boltzmann law describes the total power radiated per unit surface area A of a 

blackbody at temperature T. it states, 

P = σAT4 

Where; 

 P is the total power radiated,  

 Σ is the Stefan-Boltzmann constant (σ= 5.67x10-8 W/m2.K-4) 

  A is the surface area of the blackbody, and  

  T is the absolute temperature in kelvin. 

The Stefan-Boltzmann Law is easily observed by comparing the integrated value (i.e., under 

the curves) of the experimental black-body radiation distribution in Figure 10.3 at different 

temperatures. In 1884, Boltzmann derived this T4 behavior from theory by applying classical 

thermodynamic reasoning to a box filled with electromagnetic radiation, using Maxwell’s 

equations to relate pressure to energy density. That is, the tiny amount of energy coming out 

of the hole would of course have the same temperature dependence as the radiation intensity 

inside. 

 

Figure 11.3: Graph of a function of total emitted energy of a blackbody proportional to the 

fourth power of its thermodynamic temperature T according to the Stefan-Boltzmann law. 

Thermodynamic Proof: 

The Stefan-Boltzmann law can be derived using fundamental principles from 

thermodynamics, particularly considering the relationship between the entropy change and 
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the energy transfer associated with radiation. Here’s a step-by-step outline of the 

thermodynamic proof: 

Consider a Blackbody in Thermal Equilibrium: 

Imagine a blackbody at temperature T in thermal equilibrium. According to 

thermodynamics, the total energy radiated per unit time by the blackbody is related to 

its temperature and surface area. 

Energy Density of Blackbody Radiation: 

The energy density u(ν, T) of blackbody radiation at temperature T and frequency ν is 

given by Planck’s law:  

 

Integrating over all frequencies gives the total energy density u(T): 

 

Substituting Planck’s law into this integral and performing the integration yields: 

 

Here, σ =  is the Stefan-Boltzmann constant in terms of fundamental constants 

kB (Boltzmann constant),  (reduced Planck’s constant), and c (speed of light). 

3. Power Radiated by the Blackbody: 

The power P radiated per unit area A by the blackbody is obtained by multiplying the energy 

density u(T) by the speed of light c and surface area A: 

P = u(T) . A. c 

Conclusion: 

This law quantitatively describes the total power radiated by a blackbody as a function of its 

temperature and surface area, providing a fundamental connection between thermodynamics, 

radiation, and the properties of matter. 

 

10.8. Radiation Pressure 

Radiation pressure refers to the pressure exerted by electromagnetic radiation on a surface. It 

is a fundamental concept in physics and has applications in various fields, including 

astrophysics, optics, and materials science. Here's an explanation of radiation pressure and its 

key aspects: 

Definition and Concept 
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Photon Momentum: Electromagnetic radiation, such as light, consists of photons, which are 

packets of energy and momentum. Despite being massless, photons carry momentum given 

by: p=E/c=hν/c. Here p is the momentum of the photon, E is its energy, c is the speed of 

light, h is Planck's constant, and ν is the frequency of the radiation. 

Pressure from Photon Momentum: When photons strike a surface, they transfer 

momentum to it. The rate of transfer of momentum per unit area is the radiation pressure Prad 

=I/c, where I is the intensity of radiation (power per unit area) and c is the speed of light. 

Characteristics and Calculation 

Intensity of Radiation: The radiation pressure depends directly on the intensity of the 

incident radiation. Higher intensities lead to higher radiation pressure. 

Directionality: Radiation pressure acts perpendicular to the surface upon which the radiation 

impinges. The pressure is exerted in the direction of photon propagation. 

Applications in Astrophysics: Radiation pressure plays a crucial role in stellar dynamics, 

where it contributes to phenomena such as stellar winds, radiation-driven outflows, and the 

pressure balance within stars. 

Optical Tweezers: In optics, highly focused laser beams can exert significant radiation 

pressure on small particles, allowing for precise manipulation and trapping of microscopic 

objects. 

Mathematical Formulation 

Pressure from Radiation: For a surface absorbing or reflecting radiation, the pressure 

exerted due to the absorbed or reflected photons can be derived from the change in 

momentum per unit time. 

Blackbody Radiation: For a perfectly absorbing blackbody, the radiation pressure can be 

derived from the rate of change of momentum imparted by the absorbed photons. 

Astrophysical Implications 

Stellar Evolution: Radiation pressure from nuclear fusion reactions in stars contributes to 

their internal dynamics and stability. 

Radiation Pressure Dominated Environments: In astrophysical scenarios such as around 

black holes or in active galactic nuclei, radiation pressure can be a dominant force 

influencing the surrounding gas and dust. 

Conclusion 

Radiation pressure is a fundamental concept in physics that arises from the momentum 

carried by electromagnetic radiation. It is crucial for understanding the dynamics of radiation 

interaction with matter, from everyday optical phenomena to the behavior of stars and 
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galaxies in the cosmos. The concept is essential in both theoretical and applied contexts 

across various scientific disciplines. 

 

10.9. Wien’s Displacement law 

Wien's Displacement Law is a fundamental principle in physics that relates the peak 

wavelength (λmax) of the emitted radiation from a blackbody to its temperature (T). It 

provides insights into the spectral distribution of thermal radiation emitted by objects based 

on their temperature. Here’s a detailed explanation of Wien’s Displacement Law: 

Statement of Wien’s Displacement Law 

"The wavelength λmax at which the intensity of radiation emitted by a blackbody is 

maximum is inversely proportional to the absolute temperature T of the blackbody." 

Mathematical Formulation 

Wien's Displacement Law can be expressed as: 

λmaxT=b 

Where: 

λmax is the peak wavelength of radiation emitted by the blackbody, 

T is the absolute temperature of the blackbody in Kelvin, 

b is Wien's displacement constant, which has a value of approximately 2.897×10−3 Meter. 

Kelvin (m .K). 

Derivation and Understanding 

Wien's Displacement Law can be derived using Planck's law for blackbody radiation and 

considerations of maximizing the intensity I(λ, T) with respect to wavelength λ at a given 

temperature T. 

1. Planck’s Law: The spectral radiance B(λ, T) of blackbody radiation is given by : 

 

2. Maximizing intensity: The wavelength λmax at which B(λ, T) is maximum (peak intensity) 

can be found by differentiating B(λ, T) with respect to λ, setting the derivative equal to zero, 

and solving for λ. 

3. Wien’s displacement Constant : Upon derivation and solving, it is found that λmaxT = b, 

where b is a constant that relates the peak wavelength to the temperature of the blackbody. 
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Implications and Applications 

 Temperature Determination: Wien's Displacement Law allows astronomers and 

physicists to determine the temperature of stars and other celestial objects based on 

the peak wavelength of their emitted radiation. 

 Color Temperature: In lighting and photography, the color temperature of light 

sources is directly related to Wien's displacement constant, influencing the perceived 

color of light emitted. 

 Thermal Imaging: Infrared thermography utilizes Wien's Displacement Law to 

measure and interpret the temperature of objects based on the infrared radiation they 

emit. 

 Technology and Materials Science: Understanding thermal radiation and its spectral 

distribution is crucial for designing materials with specific thermal properties and for 

developing advanced technologies based on infrared radiation. 

In summary, Wien's Displacement Law is a foundational principle in the study of blackbody 

radiation, providing a direct relationship between the temperature of a blackbody and the 

wavelength at which its emission intensity peaks. It has broad implications across multiple 

disciplines, influencing both theoretical understanding and practical applications involving 

the  

 

10.10. Saha’s Ionization Formula 

Saha's ionization equation, formulated by the Indian astrophysicist Meghnad Saha in 1920, 

describes the ionization state of a gas in thermal equilibrium. It provides a way to calculate 

the relative populations of atoms and ions of a particular element at different temperatures 

and pressures. This equation is particularly important in astrophysics for understanding the 

ionization conditions in stellar atmospheres and other high-temperature environments. Here's 

a detailed explanation of Saha's ionization formula: 

Saha Equation 

Saha's ionization equation relates the number densities of atoms, ions, and electrons in a gas 

in thermal equilibrium. It is given by: 

 

Where 

Nr+1 and Nr are the number densities of ions with ionization state r+1 and r, respectively. 
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Ur+1 and Ur are the partition functions of the ions r+1 and r, which account for the statistical 

weights of the energy levels of each ionization stage. 

 Ne is the number density of electrons. 

 Me is the mass of an electron. 

 KB is Boltzmann’s constant. 

 T is the temperature in Kelvin. 

 H is Planck constant 

 r is the ionization energy (or ionization potential) of the r-th ionization stage. 

 

Key Points 

1. Ionization Balance: Saha's equation helps determine the balance between different 

ionization stages of an element in a plasma or gas at a given temperature and electron 

density.  

2. Temperature Dependence: The exponential term  shows that higher 

temperatures favour higher ionization stages (since r typically with ionization stage r.) 

3. Electron Density Influence: The term  indicates that higher electron densities lead to 

greater ionization. 

4. Partition Functions: Ur+1 and Ur are functions that account for the statistical mechanics 

of the ion’s internal energy levels. They encapsulate the degeneracy and energy spacing 

of these levels. 

5. Applications:  

 Stellar Atmospheres: Saha’s equation is used to model and understand the ionization 

states of elements in stellar atmospheres, providing insights into the spectral lines 

observed in stellar spectra.  

 Astrophysical Plasmas: It is applied in astrophysical contexts, such as in the study of 

nebulae, where higher temperatures and densities can significantly affect the 

ionization equilibrium.  

 Laboratory Plasma Physics: Used in laboratory plasma experiments to understand 

and control the ionization processes within controlled environments. 

Limitations 

 Assumptions: Saha's equation assumes thermal equilibrium, neglects radiation 

pressure, and assumes a one-dimensional model of the plasma. 
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 Non-Ideal Conditions: In highly non-equilibrium plasmas or where radiation 

transport effects are significant, modifications or more complex models may be 

required. 

Saha's ionization formula remains a cornerstone in astrophysics and plasma physics, 

providing a fundamental tool for analysing and interpreting the ionization states of elements 

under various conditions of temperature and electron density. 

 

10.11. Rayleigh-Jean’s Law 

Lord Rayleigh and J. H. Jeans developed an equation which explained blackbody radiation at 

low frequencies. The equation which seemed to express blackbody radiation was built upon 

all the known assumptions of physics at the time. The big assumption which Rayleigh and 

Jean implied was that infinitesimal amounts of energy were continuously added to the system 

when the frequency was increased. Classical physics assumed that energy emitted by atomic 

oscillations could have any continuous value. This was true for anything that had been 

studied up until that point, including things like acceleration, position, or energy. Their 

resulting Rayleigh-Jeans Law was: 

 

Experimental data performed on the black box showed slightly different results than what 

was expected by the Rayleigh-Jeans law (Figure 11.1). The law had been studied and widely 

accepted by many physicists of the day, but the experimental results did not lie, something 

was different between what was theorized and what actually happens. The experimental 

results showed a bell type of curve, but according to the Rayleigh-Jeans law the frequency 

diverged as it neared the ultraviolet region.  

 

Figure 11. 4 : Relationship between the temperature of an object and the spectrum of 
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blackbody radiation it emits. At relatively low temperatures, most radiation is emitted at 

wavelengths longer than 700 nm, which is in the infrared portion of the spectrum. The dull 

red glow of the hot metalwork in Figure 11.4 is due to the small amount of radiation emitted 

at wavelengths less than 700 nm, which the eye can detect. As the temperature of the object 

increases, the maximum intensity shifts to shorter wavelengths, successively resulting in 

orange, yellow, and finally white light. At high temperatures, all wavelengths of visible light 

are emitted with approximately equal intensities. 

 

10.12. Ultraviolet Catastrophe. 

The Ultraviolet Catastrophe refers to a theoretical prediction in classical physics, particularly 

in the context of blackbody radiation, where the intensity of radiation diverges to infinity as 

the wavelength decreases towards zero. This catastrophic prediction arose from the 

application of classical electromagnetic theory to describe the thermal radiation emitted by a 

blackbody. 

 

10.13. Historical Context 

In the late 19th century, physicists attempted to understand the spectrum of electromagnetic 

radiation emitted by a blackbody at thermal equilibrium. A blackbody is an idealized physical 

object that absorbs all incident radiation and emits radiation at all wavelengths. Classical 

electromagnetic theory, specifically the Rayleigh-Jeans Law, was initially used to describe 

this radiation spectrum. 

 

10.14. Rayleigh- Jeans Law 

Rayleigh-Jeans law describes the spectral radiance BRJ(λ, T) of blackbody radiation as:  

 

Where, C is the speed of light, kB is Boltzmann’ constant, T is the temperature of the 

blackbody, and λ is the wavelength of radiation. 

The Problem: Divergence at Short wavelengths: 

According to Rayleigh-Jeans Law, the intensity of radiation I( increases without bound 

as λ approaches zero: 

IRJ (λ, T)  

This implies that the total radiated power becomes infinite as shorter and shorter wavelengths 
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are considered. In practical term, this means that the blackbody would emit an infinite 

amount of energy in the ultraviolet region and beyond, which contradicts experimental 

observations. 

Resolution by Planck 

Max Planck resolved the Ultraviolet Catastrophe in 1900 by introducing a revolutionary 

concept: quantization of energy. He proposed that the energy emitted or absorbed by a 

blackbody is not continuous but occurs in discrete packets or quanta, each associated with a 

specific frequency ν and energy E=hν where h is Planck's constant. 

Planck's Law 

Planck's law for blackbody radiation incorporates this quantization principle: 

 

Planck's law accurately describes the spectral distribution of blackbody radiation across all 

wavelengths and temperatures, resolving the divergence predicted by Rayleigh-Jeans Law at 

short wavelengths. It reconciles with experimental data and laid the foundation for modern 

quantum mechanics. 

Significance 

The Ultraviolet Catastrophe and its resolution by Planck were pivotal in the development of 

quantum mechanics and the understanding of the interaction between matter and radiation. It 

highlighted the inadequacy of classical physics in describing certain phenomena and led to a 

paradigm shift towards quantum theory, revolutionizing physics in the early 20th century. 

 

Self –Assessment  

1. What is a blackbody radiator according to the Classical Theory of Radiation? 

2. State Planck's law of blackbody radiation and its significance. 

3. Explain the concept of the Stefan-Boltzmann law and its mathematical expression. 

4. What is the Ultraviolet Catastrophe problem in the context of the Classical Theory of 

Radiation? 

5. How does Wien's displacement law relate to the temperature of a blackbody radiator? 

6. Which of the following is a state function for an ideal gas? 

A) Heat capacity at constant pressure (Cp) 

B) Work done during an isothermal process (Wisothermal) 

C) Internal energy (U) 
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D) Heat transferred during an adiabatic process (Qadiabatic) 

7.  The equation of state for an ideal gas relates: 

A) Pressure, volume, and temperature 

B) Heat capacity, entropy, and temperature 

C) Work done, heat transferred, and pressure 

D) Kinetic energy, potential energy, and internal energy 

8. Which thermodynamic function remains constant for an ideal gas during an adiabatic 

process? 

A) Temperature (T) 

B) Pressure (P) 

C) Volume (V) 

D) Entropy (S) 

9. The heat capacity at constant pressure (Cp) of an ideal gas depends on: 

A) Temperature only 

B) Pressure only 

C) Volume only 

D) Both temperature and volume 

10. The concept of negative temperature arises due to: 

A) Decreasing energy levels at higher temperatures 

B) Anomalies in the behavior of gases at extremely low temperatures 

C) Systems where energy distribution follows a Boltzmann distribution 

D) A population inversion in energy states 
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Chapter 11 

Bose-Einstein Statistics 

 

11.1. Introduction 

Phase Space:  

At any instant state of motion of particle (with 3-degrees of freedom) can be determined 

completely in terms of its three position coordinates (x, y, z) in Euclidean space and 

corresponding components (Px. Py, Pz) of its momentum. These components are considered as 

coordinates of the particle in momentum space. Thus the state of motion of the particle is 

completely determined by the six coordinates (x, y. x. Px. Py, Pz). Mathematically these 

coordinates are the coordinates of the point in the space of six dimensions. Such six 

dimensional space is called phase space (u-space). The point representing the particle in 

phase space is called phase point. Each particle has its own phase space and phase point. 

Unit cell: 

Suppose at an instant the position and momentum coordinates in the phase space of a particle 

are within the range x to  x+dx, y to y+dy, to zdz and Px. to P+ dPx, Py to Py + dPy, Pz to Pz +d 

Pz.. Therefore at that instant the point will lie in the element of the phase space of a particle 

of volume, given by 

dΓ = dxdydzdPxdPydPz 

dΓ = (dxdydz) (dPxdPydPz) 

dΓ = (dVx) (dVp) 

Where dV: the volume element of the physical space and dVp, the volume element of the 

momentum space. 

Consider the minimum volume of this element, i.e. 

dΓ = (dxdydz)min (dPxdPydPz)min 

dΓ = (dxdPx)  (dydPy)  (dzdPz) 

According to Heisenberg's uncertainty principle ,the minimum value of each of the products 

is approximately equal to Planck's constant h 

        Therefore, dΓ=   (h) (h) (h) = h3 Such element (cell) of minimum volume is called unit 

cell. 

The phase point of particle in phase space must be considered as being located somewhere in 

the unit cell. The volume of the unit cell (4) in phase space is considered as the volume of 

each available quantum state of energy in phase space. 

Number of Unit Cells or Quantum States in Energy Range between E and E+dE: 
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Consider a system of particles having energies in the range between E and E + dE. Let the 

physical volume of the system of particles is V.  

A finite volume of phase space available to a particle =  

 The volume of unit cell in the phase space is h². 

Therefore number of unit cells in the volume of the phase space is given by  

 

The first integral is physical volume occupied by the particles, ie,  

 

The second integral is to be evaluated within energy range E and E+ dE. This integral is the 

element dVp ' of momentum space, containing particles having energies in the range between 

E and E+dE.  

To evaluate this integral imagine two concentric spheres of radius P and P + dP in 

momentum space as shown in fig.  

All points on the surface of the sphere of radius P=  √2mE in momentum space, represents 

the particles of energy E. 

All points on the surface of the sphere of radius P+dP= √2m(E+dE) in momentum space, 

represents the particles of energy E+dE. 

 

Therefore volume dVp ' is the volume of spherical shell between to spheres,  

 

Substituting this value of integral in equation (1), writing g (E) dE in place of g for the energy 

range. 
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This equation gives the number of unit cells or quantum state of energy available to having 

energies in the range between E and E+ dE. 

 

Density of Quantum States of Energy g(E) 

Any interval dE of energy contains a large number of possible quantum states. For example, 

if                       dE= 10-3eV then minimum number of quantum states in this interval are 

1000. Density of quantum states g(E) is defined as the number of quantum states per unit 

energy range at given energy E. 

According to the definition the quantity g(E) dE represents the number of quantum states 

with energies in the range between E and E+ dE. 

 

Microstate and Macrostate of a system: 

Suppose we divide the phase space of a system of particles into small cells. Each cell 

corresponds 

to a small region of position and momentum and hence to a small range of energy. For 

defining microstate of the system we should specify to which cell each molecule of the 

system belongs at particular instant. A macrostate, on the other hand, is specified by just 

giving number of molecules in each cell of phase space. 

For example: 

Consider distribution of four particles (a, b, c, d) in two cells. There are five possible 

arrangements as (0, 4), (1, 3), (2, 2), (3, 1), (4, 0), each arrangement is called macrostates of 

the system. Each macrostate of the system may contains different microstates as given below. 

Macrostates                    Microstates 

 (0, 4)                                 (-, abed) 

(1. 3)                                 (a, bed), (b, acd), (c, abd), (d, abc) 

(2,2)                                 (ab, cd), (ac, bd), (ad, bc), (be, ad), (bd, ac), (cd, ab) 

(3, 1)                                (abe, d), (abd, c), (acd, b), (bed,a) 

(4,0)                                   (abed, --) 

 

11.2. Thermodynamic Probability 

According to theory of probability, the probability of occurrence of an event is defined as the 

ratio of the number of favorable cases for the occurrence of the event to the total number of 

possible cases. Maximum value of this probability is 1. 

In thermodynamics it is convenient to consider simply the total number of favorable cases. 
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This number is called Thermodynamic Probability. 

The thermodynamic probability for occurrence of given a macrostate of a system in 

equilibrium is the total number of possible microstates of the system corresponding to the 

given microstate.  

Principle of Equal Priori Probability: 

Principle of Equal Priori Probability states that "all different quantum states of an isolated 

system in equilibrium are equally probable". 

In other words, in an isolated system in equilibrium the probability for any one particle to be 

in a given quantum state is the same. 

 

11.3. Distinguishable & Indistinguishable Particles 

In classical mechanics identical particles do not lose their identity despite the similarity of 

their physical properties, since individual particles follow sharp trajectories during the course 

of experiment. As result classical mechanical particles can be distinguished from one another, 

hence they are distinguishable. 

As an example consider the molecules of a gas at N.Τ.Ρ. 

Molecular density = 1025  molecules/m3 

Therefore volume available for each molecule = 1025  molecules/m3 

Molecular radius 10-10 m  

Therefore volume of molecule = 4/3πr3 = 10-30  m3 

As the molecule is much smaller than the volume available for it, hence we can identify every 

molecule of the gas. Hence they are distinguishable. 

In quantum mechanics a particle in motion is represented by a wave packet of finite size and 

spread. Hence there is no way of keeping track of individual particles separately, since wave 

packets of individual particles considerably overlap to each other. As result quantum 

mechanical particles cannot be distinguished from one another, hence they are 

indistinguishable. 

As an example consider the free electrons in metal 

Density of free electrons in metal  = 1028 m-3 

Therefore volume available for each electron =10-28 m3 

For electrons of energy leV, the momentum, p= √ (2mE) 

[2 x 9.1 x 10 x 1.6 x 102 0.5 x 10 kg m/sec 
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Minimum uncertainty in position of electron 

 

Therefore volume of the wave packet =  

 

Thus, for the free electrons in metal volume available is less than volume of its wave packet, 

ie, their wave packets overlap considerably. Hence free electrons in metal cannot be 

identified separately. Hence they are indistinguishable. 

In classical statistics, the probability of a cell containing two or more particles is considered 

insignificant, allowing the particles to be treated as distinguishable. However, in all natural 

systems, the uncertainty principle is followed, and the minimum size of a cell in phase space 

is h3. As a result, the number of cells gi is constrained by the value of h3. When the 

occupation index is taken into account, the particles cannot be treated as distinguishable, 

rendering classical statistics inapplicable. 

These difficulties were resolved by the use of Quantum statistics and can be divided as: 

1. Bose  Einstein (BE) statistics 

2. Fermi  Dirac (FD) statistics 

 

11.4. Bose-Einstein Statistics 

It is quantum statistics. The particles obeying this statistics are called Bosons. The Bosons are 

identical, indistinguishable with spin angular momentum equal to nh where, n= 0,1,2 and 

there is no restriction on the number of particles in the quantum state ie, they do not obey 

Pauli's exclusion principle. The Bosons have symmetric wave function. Examples of Bosons 

are photons, a-particles, - mesons, etc. 

 

Consider system of particles in equilibrium at absolute temperature T, total energy U, volume 

and total number of particles N. 

Let n1, n2,n3……..ni…..ns be the number of particles in the energy level E1, E2, E3………Ei-----

--Es respectively  and g1, g2, g3-------gi----gs be the number of energy states associated with the 
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energy levels . 

------(1) 

------(2) 

Taking differential of equation (1) and (2) , we get  

    -----------(3) 

     

----------(4) 

Suppose we have to distribute ni, indistinguishable particles in gi distinguishable states and 

there is no restriction on the number of particles in the quantum state. It is similar to 

distribute ni  particles about (gi-1) partitions. The number of possible distributions is 

 

Therefore total number of possible distributions of all N particles in all quantum states is 

given by 

 

This is called thermodynamic probability. 

Taking log on both sides, we get 

 

Using Stirling's formula, we get 
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Taking differential of above equation, we get 

 

For most probable distribution d(log(W)) = 0 therefore 

 

     ---------------(5)  

Using Lagrange's method undetermined multiplier, i.e, multiplying equation (3) by (-a) & 

equation (4) by (- β) then adding in equation (5). 

 

As, dni  represents change in number of particles, therefore dni ≠0  

 

This equation is known as Bose Einstein law of distribution of particles among the energy 

levels. 
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Self-Assessment  

1 What types of particles obey Bose-Einstein statistics? 

2 Describe the key feature of the Bose-Einstein distribution function. 

3 What is Bose-Einstein condensation (BEC)? 

4 How does Bose-Einstein statistics differ from Fermi-Dirac statistics? 

5 What are the implications of Bose-Einstein condensation in physics? 

6 What type of particles obey Bose-Einstein statistics? 

A. Fermions B. Bosons C. Quarks D.   Leptons 

7 State the fundamental principle of Bose-Einstein statistics:  

A. Pauli exclusion principle 

B. No two fermions can occupy the same quantum state 

C. Bosons can occupy the same quantum state simultaneously 

D. Bosons obey the conservation of parity 

8 Which parameter plays a crucial role in the Bose-Einstein distribution function?  

A. Mass of the particle  

B. Spin of the particle  

C. Temperature  

D. Charge of the particle  

9 At what temperature does Bose-Einstein condensation typically occur in an ideal Bose 

gas?  

A. Absolute zero 

B. Below the critical temperature 

C. Above the critical temperature 

D. At any temperature 

10 Bose-Einstein condensation occurs when:  

A. The temperature exceeds the critical temperature 

B. The number of particles becomes very large 

C. Particles occupy the same quantum state 

D. The system reaches equilibrium 
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Chapter 12 

Fermi – Dirac Statistics 

 

12.1. Introduction  

Fermi-Dirac Statistics: 

It is quantum statistics. The particles obeying this statistics are called Fermions. The 

Fermions are identical, indistinguishable with spin angular momentum equal to (2n+1)/2 

where, n=0,1,2 and there can be only one particle in each quantum state i.e., they obey Pauli's 

exclusion principle. The Fermions have anti-symmetric wave function. Examples of 

Fermions are electrons, protons, neutrons, etc. 

Consider system of particles in equilibrium at absolute temperature T, total energy U, volume 

V and total number of particles N. 

Let n1, n2,n3……..ni…..ns be the number of particles in the energy level E1, E2, E3………Ei-----

--Es respectively  and g1, g2, g3-------gi----gs be the number of energy states associated with the 

energy levels . 

 

      ------(1) 

 

 

------(2)  

 

Taking differential of equation (1) and (2) , we get  

    ----------(3) 

      

----------(4) 

Suppose we have to distribute ni, indistinguishable particles in gi distinguishable states and 

there is no restriction on the number of particles in the quantum state. It is similar to 

distribute ni  particles about (gi-1) partitions.  

The number of possible distributions is  
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Therefore total number of possible distributions of all N particles in all quantum states is 

given by     

 

This is called thermodynamic probability. 

Taking log on both sides, we get 

 

Using Stirling's formula, we get 

 

Taking differential of above equation, we get 
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For most probable distribution (log W)= 0, therefore 

……………(5)         

Using Lagrange's method undetermined multiplier, i.e, multiplying equation (3) by (- α) & 

equation (4) by (-β) then adding in equation (5). 

 

As, dni represents change in number of particles, therefore dni ≠ 0 

 

This equation is known as Fermi Dirac law of distribution of particles among the energy 

levels. 

 

12.2. Fermi function and Fermi Energy 

It is quantum statistics. The particles obeying this statistics are called Fermions. The 
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Fermions are identical, indistinguishable with spin angular momentum equal to (2n+1)/2 

where, n=0,1,2 and there can be only one particle in each quantum state i.e., they obey Pauli's 

exclusion principle. The Fermions have anti-symmetric wave function. Examples of 

Fermions are electrons, protons, neutrons, etc. 

Consider system of particles in equilibrium at absolute temperature T, total energy U, volume 

V and total number of particles N. 

Let n1, n2,n3……..ni…..ns be the number of particles in the energy level E1, E2, E3………Ei-----

--Es respectively  and g1, g2, g3-------gi----gs be the number of energy states associated with the 

energy levels . 

According to Fermi Dirac statistics, most probable distribution is given by. 

-------(1) 

As α is dimension less constant, hence we can put  

 This means that in this system ,  is constant with units of energy corresponding to a 

particular temperature  T , also  

 

We denote  by F( Ei)  and it is called as Fermi function for ith energy level . thus 

-------(2) 

This expression gives the probability that particular quantum states of energy  is occupied 

at temperature T. 

Now discuss the effect temperature on Fermi function . 

1) At absolute zero temperature ( T = 0K) 

(a) Suppose that Ei is smaller than EF  i.e.  Ei<< EF, at absolute zero , equation (2) 

leads to  

 

That is quantum state of energy Ei is occupied . 

(b) Suppose that Ei is smaller than EF  i.e.  Ei>> EF, at absolute zero , equation (2) 

leads to  

 



127  

This is quantum state of energy Ei is empty . 

Thus at absolute temperature ( T =  00  K )  all states with energies less than EF are filled and 

all states with energies more than EF are vacant . 

(c)  At absolute temperature ,  Suppose that Ei is equal to  EF  i.e.  Ei = EF, at 

absolute zero , equation (2) leads to  

 

 

Therefore Fermi energy at any temperature is defined as “ the energy of the level with 

quantum states 50 % occupied and 50% empty . 

 

12.3. Free Electron in Metal 

Suppose  energy levels of the system are very closed  together, then the number of particles 

n(E)dE. with energies between E and E+ dE is given by 

                                                          n(E)dE = F(E) g( E) dE               ----------------(1)  

Where g (E) dE, the number of states between E and E+ dE is given by  

 

For particles like    spin angular momentum of electron  is equal to  ±1/2h i.e. it means that 

there two possible spin orientations .for a system of such particles g(E)dE is given by  

------------(2) 

------------(3) 

Using equation (2) and (3) in equation (1) 
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This equation is known as Fermi energy distribution law for the free electrons in metal . This 

gives the number of electrons with energies between E  and E+ dE. 

 

12.4. Expression for Fermi Energy for Free Electrons in a Metal at Absolute Zero  

Temperature (EF0 ) 

The total number N of the free electrons in a metal of volume is given by 

 

 

We know that at T=0 , if E<EF0Fm then F(E) = 1 and at T = 0 if E>EF0 , then F(E) = 0 Hence 

above equation becomes 

 

As g(E)dE is given by  

 

This expression gives total number of electrons in the metal at absolute zero. 

 

Taking 2/3 rd power of both sides , we get  



129  

 

Where n = N/V = number of free electrons in the metal at absolute zero. This expression 

gives Fermi energy of electrons in the metal at absolute zero. The total energy of electrons at 

absolute zero temperature is given by  

 

 

Thus the average energy per electron at absolute zero T = 0K is equal to 3/5 times the fermi 

energy. 

 

Self Assessment 

1 Define Fermi energy in the context of solid-state physics. 

2 What physical property does Fermi energy determine in a material? 
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3 Explain how Fermi energy relates to the concept of the Fermi level. 

4 How does Fermi energy influence the electrical conductivity of a material? 

5 Describe how Fermi energy changes with temperature in a solid. 

6 Which particles obey Fermi-Dirac statistics? 

A. Bosons  

B. Quarks  

C. Fermions  

D. Leptons 

7 At what temperature does a Fermi gas become completely degenerate?  

A. High temperatures  

B. Room temperature  

C. Very low temperatures  

D. Absolute zero 

8 What happens to the Fermi energy of a Fermi gas as the number of particles 

increases?  

A. Increases  

B. Decreases  

C. Remains constant  

D. Fluctuates 

9 Fermi energy is defined as: 

A. The energy of the highest occupied state at absolute zero 

B. The energy of the lowest unoccupied state at absolute zero 

C. The average energy of particles in a thermal system 

D. The energy of particles at the point of phase transition 

10 Which of the following factors affect the Fermi energy of a fermion gas?  

A. Temperature  

B. Volume  

C. Particle mass  

D. All of the above 
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Chapter 13 

Application of Bose- Einstein  and Fermi –Einstein  Statistics 

 

13.1. Introduction  

Let's take a boson gas as an instance of the Bose-Einstein distribution. This gas made of  

number of  identical bosons enclosed within a box that has rigid-walls and a constant volume. 

While the bosons have the freedom to move within the box, they are constrained from 

moving beyond its walls. Energy exchange occurs between the bosons during occasional 

collisions. To simplify matters, we assume that the bosons possess a spin of zero, thereby 

eliminating any degeneracy associated with different spin states. 

First, let us examine the characteristics of the coefficient B found in the equation for the 

Bose-Einstein distribution. This value represents the partition function in the Boltzmann 

distribution or the chemical potential in the Fermi-Dirac distribution. The determination of B 

is governed by the following constraint: 

                                     ----(1)  

Here  N is the number of particles. Now determine variable  B depends on temperature. 

 

 

Let's consider the possibility of substituting a sum over distinct energy levels with an integral 

over a range of energy levels. As a result, equation (1) transforms into . 

 

Using the Bose-Einstein distribution and the density of states, this becomes: 

 

Lets define a new variable, y, such that: 

 

In terms of y, the equation for B becomes: 
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We define the function F(B): 

 

In terms of F(B), the equation for B becomes: 

---------------(2)  

To understand the function F(B), let us draw a graph of it: 

 

When B is large, we can approximate F(B) to be approximately equal to 1/B. This 

approximation is valid when B is much greater than 1, and can be expressed 

as:  

Thus, from equation (2) becomes , 

 

we find that, for large B (or, equivalently, for high temperature): 

 

However, it is crucial to acknowledge that the integral cannot be assessed below B = 1 due to 

the existence of a singularity at this precise point. From a physical perspective, this carries 

substantial significance. The Bose-Einstein distribution is: 
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If B is less than 1, it is possible for there to exist an energy level εi where the number of 

particles ni is less than 0. It is evident that having a negative number of particles in any 

energy level is not feasible, thus we anticipate B to be greater than or equal to 1. 

We see that F(B) takes a maximum value, at B = 1. The maximum value of F(B) is given by: 

 

Here, ζ(x) is the Riemann zeta function, defined by: 

 

Since   F(B) has a maximum value of for  B =1 i.e. F(1) ≈ 2.612, we expect from equation 

 

As the temperature decreases, F(B) must increase. However, if F(B) has a finite maximum 

value, then below a certain temperature TB, the integrated Bose-Einstein distribution yields a 

particle count lower than N, the total number of particles in the system. 

 

The population density n(ε) as a function of energy ε provides clarity to the situation when 

plotted for various temperatures. When the temperature T is greater than TB, a smooth 

distribution curve emerges, which closely resembles the expected distribution for a Maxwell-

Boltzmann gas, particularly at high temperatures. It is worth noting that the area under the 

curves for T > TB remains unaffected by the temperature T. 

However, when the temperature T is lower than TB, it becomes challenging to evaluate the 

population density as we lack a solution for the parameter B. In such cases, we make the best 

possible approximation by setting B = 1 for T < TB. This approximation results in a 

distribution that exhibits a sharp peak at low energy levels. However, the height of this peak 

is insufficient to accurately determine the number of particles in the system based on the area 
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under the curve. 

 

13.2. The Fermi gas population distribution 

The population distribution of the Bose-Einstein gas can be contrasted with that of a Fermi 

gas. Notably, the population distribution of a Fermi gas remains well-behaved even as the 

temperature approaches absolute zero, T → 0.. 

 

The temperature TB at which particles start to “disappear” is given by: 

 

The Bose-Einstein condensation, when we replaced the summation over discrete energy 

levels by an integral over a continuum of energies in equation 

 

Given that the lower limit of the integral is zero, it is necessary to assume (for the sake of 
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consistency) that the ground state possesses zero energy. However, considering the 

distribution function g(ε) ∝√ε, it can be observed that at zero energy, the density of states 

becomes zero as well. Consequently, the population within the narrow energy range of 0 to 

dε is also zero. 

 

13.3. Planck's Law of Black Body Radiation 

To derive Planck's law, we will examine a black body chamber with a volume V that is 

maintained at a constant temperature T. This chamber is filled with radiant energy, which can 

be viewed as a collection of photons. When the number of photons in the chamber is 

significantly large, the spacing between two consecutive energy levels becomes minuscule, 

resulting in nearly continuous energy levels. Consequently, if the energy of photons falls 

within the range of E to E + dE, the degenerate states g should be substituted with  g(E)dE, 

and the total number of photons n in these states should be replaced with n(E)dE in the B-E 

distribution function. Therefore, we can express the number of photons with energy ranging 

from E to E+dE as follows. 

 -----------------(1)  

In black body radiation, the total number of particles is not conserved as photons are 

absorbed and re-emitted frequently by the walls of the chamber. 

i.e.  

Hence equation (1) becomes  

 -------------(2) 

Now the number of quantum states in momentum range p to p+ dp is 

 

 In quantum physics, the spin degeneracy of a quantum state, represented by gs, is indicative 

of the number of available spin orientations. For photons, with two spin orientations in the 

transverse direction, the spin degeneracy is equal to 2. 

 --------------(3) 

The momentum of a photon with frequency v can be calculated using the equation p = hv/c, 

where h is Planck's constant and c is the speed of light in free space. Additionally, the energy 

of the photon can be determined using the equation E = hv. 
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Substituting the values of p and dp in equation (3), we get the number of quantum states 

having frequency range between v to v+dv as 

 

Hence equation (2) becomes in terms of v as , 

 

The chamber of volume at temperature T provides information about the quantity of photons 

within the frequency range of v to v+ v. 

Therefore, the energy density of photons within frequency range between ν to ν+d ν is given 

by 

 

This is Plank’s law of black body radiation. 

 

13.4. Thermodynamics of an ideal Fermi gas 

The focus of our study is an ideal Fermi gas within the grand canonical ensemble, 

specifically looking at the temperature and chemical potential. Our aim is to establish the 

general formula for the thermodynamic potential and the average number of fermions. To 

simplify the derivation, we temporarily ignore the nonzero spin of fermions and concentrate 

on the fully spin-polarized Fermi gas. Let's begin by analyzing the basic scenario of a single 

energy level ε1 that can be filled by fermions. As per the Pauli exclusion principle, this level 

can either be vacant or occupied, resulting in a unique form of the grand canonical partition 

function. 

 

Now, we will introduce an additional level ε2. Once again, in accordance with the Pauli 

exclusion principle, there are four distinct scenarios that can occur: 

1) Both levels are unoccupied. 

2) Level ε1 is occupied while level ε2 remains unoccupied. 

3) Level ε1 is unoccupied while level ε2 is occupied. 

4) Both levels are occupied. 

As a result, the grand canonical partition function is modified accordingly. 
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The factorization of the grand partition function Z into independent factors for each energy 

level is clearly illustrated. This factorization can be generalized to encompass any arbitrary 

number of energy levels. 

 

 

The orbital degrees of freedom are listed here, with σ representing the projection of the 

fermion spin. The total number of particles can be determined from the equation..  

 

The function fF (ε) is called the Fermi-Dirac distribution function. 

 

13.5. Thermodynamics of an ideal Bose gas 

We are examining an ideal Bose gas in the grand canonical ensemble, specifically at a given 

temperature and chemical potential. Our aim is to derive the general expression for the 

thermodynamic potential and the average number of bosons. To simplify the derivation, we 

will focus on zero-spin bosons. 

Let's start with the simplest situation, which involves a single energy level ε1 that can be 

occupied by bosons. Since bosons do not follow the Pauli exclusion principle, this level can 

be empty, occupied by one boson, occupied by two bosons, 

 

Let's introduce an additional level ε2. Because of the lack of the Pauli exclusion principle, we 

observe the following scenario: level ε1 is filled with n1 bosons, while level ε2 is filled with n2 

bosons. n1,2 = 0, 1, 2, . . . . The grand canonical partition function becomes 
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The factorization of function Z into components for each energy level is apparent. This 

principle can be easily applied to a varying number of levels. 

 

 

 

 

The orbital degrees of freedom are listed here, while the symbol 'a' represents the z-projection 

of the spin of a boson. The equation can be used to determine the number of 

particles.

 

The function fB( ) is termed as the Bose-Einstein distribution function. 

 

13.6. Liquid Helium 

Investigating the superfluid transition of liquid helium at 2.2K provides an application for 

Bose-Einstein Statistics to understand its qualitative nature. It is noteworthy that ordinary 

helium is predominantly comprised of neutral atoms of the isotope.  . 

The Bose-Einstein Statistics provide an explanation for the peculiar properties of helium at 

low temperature, as the total angular momentum of its atoms is zero. It has been discovered 

that helium displays distinct behaviors under these specific conditions. 

1. Helium gas at atmospheric pressure condenses at 4.3 K into a liquid of very low 

density about 0.124 𝑔𝑚 /𝑐𝑚3 (Its critical temperature is 5.2 K 

2. Further cooling to about 0.82 K does not freez it and it is believed that it remains 

liquid all the way down to absolute zero. The solid state of helium does not form 

unless it is subjected to an external pressure of at least 23 atmospheres. 

3. For  in liquid phase there is another phase transition called 𝜆 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑠𝑡𝑖𝑜𝑛, 

which divides the liquid state into two phases 𝐻𝑒 − 𝐼𝑎𝑛𝑑𝐻𝑒 − 𝐼𝐼 , while liquefying 

helium noted that at about 2.2K density appeared to pass through an abrupt maximum 

and decreasing slightly thereafter. It is also revealed that critical temperature is at 

2.186 K and that it represents a transition to a new state of matter known as liquid 𝐻𝑒 

− 𝐼𝐼 .  
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In liquid 𝐻𝑒 − 𝐼𝐼 it is found that 

a) Heat conductivity is very large of the order of 3.106 times greater 

b) Co-efficient of viscosity gradually diminishes as the temperature is lowered and 

appears to be approaching zero at absolute zero tempature. 

c) Specific Heat measurement shows that specific heat curve discontinuous at 2.186K. The 

shape of the specific heat curve resembles the shape of 𝜆 and therefore this peculiar transition 

is 𝜆 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑠𝑡𝑖𝑜𝑛 and the discontinuity temperature 2.186K is called 𝜆 − 𝑝𝑜𝑖𝑛𝑡. Liquid 

helium state has no latent heat concluded that 𝐻𝑒𝐼⇉𝐻𝑒𝐼𝐼𝑎𝑡𝜆𝑇is a second order transition. 

 

 

13.7. White Dwarf Stars and  Chandrasekhar Mass Limit 

When stars exhaust their fuel, the temperature drops to zero, leading them to 

depend on the Pauli exclusion principle for survival via degeneracy pressure. 

These stars, supported by electron degeneracy pressure, are classified as white 

dwarfs. Moreover, besides the fermions' kinetic energy Ekinetic in the system, 

there is also gravitational energy. Assuming uniform density within a star of 

radius R, 
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The objective is to minimize Egrav+Ekinetic in the assignment to establish the 

connection between the star's mass and radius, with GN denoting Newton's 

constant. 

 

When the star decreases in size, the Fermi energy decreases as well. At some 

point, it reaches a level similar to the electron mass me, causing our non-

relativistic approximation to no longer be valid. To address this, we can 

recalculate using the relativistic formula for the density of states (adjusted by a 

factor of 2 to consider spin degeneracy). In the case of ultra-relativistic 

electrons, where E≫ me, the density of states can be expanded. 

 

from which we can determine the kinetic energy due to fermions, replacing the 

non- relativistic result  by 
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The Fermi energy can be expressed in terms of the particle number by 

 

The total energy of the system is then given by, 

  

Where mp is the proton mass (and we're taking M = Nmp as a good 

approximation to the full mass of the star). If the term above is positive then the 

star once again settles into a minimum energy state, where the 1/R term 

balances the term that grows linearly in R. But if the 1/R term is negative, the 

star is unstable to gravitational collapse and will shrink to smaller and smaller 

values of R. This occurs when the mass exceeds the Chandrasekhar limit, M > 

Mc. Neglecting factors of 2 and π, this limit is 

 

The mass of this object is approximately 1.5 times that of the Sun. Stars 

surpassing this threshold will not undergo white dwarf formation. Instead, their 

collapse could be halted by neutron degeneracy pressure, leading to the creation 

of a neutron star. Alternatively, if the collapse is not impeded, a black hole may 

form. 

 

Self-Assessment 

1 Explain the concept of Bose-Einstein condensation (BEC) and its occurrence in a 

Bose gas. 

2 Provide a qualitative description of the properties of liquid helium. 
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3 Outline the derivation of Planck’s law of blackbody radiation using Bose-Einstein 

statistics. 

4 What happens if a white dwarf exceeds the Chandrasekhar mass limit? 

5 Why is the Chandrasekhar mass limit important in astrophysics? 

6 Planck's law of blackbody radiation can be derived from: 

A. Bose-Einstein statistics   B. Fermi-Dirac statistics 

C. Maxwell-Boltzmann statistics  D. Boltzmann statistics 

7 Which system is best described as a photon gas according to statistical 

mechanics? 

A. X-ray emission from a star   B. Blackbody radiation 

C. Visible light from a light bulb  D. Infrared radiation from a heater 

8 Which thermodynamic function is most relevant for describing a strongly 

degenerate Bose gas? 

A. Helmholtz free energy   B. Gibbs free energy 

C. Internal energy    D. Entropy 

9 Which property of liquid helium distinguishes it qualitatively from other 

substances? 

A. It remains liquid at very low temperatures. 

B. It exhibits superfluidity at low temperatures. 

C. It has a high boiling point. 

D. It shows ferromagnetic properties at low temperatures. 

10 The thermodynamic function most directly related to the energy distribution in a 

photon gas is: 

A. Entropy     B. Internal energy 

C. Helmholtz free energy   D. Gibbs free energy 

11 Liquid helium-4 exhibits which unique property at temperatures close to 

absolute zero?  

A. Ferromagnetism    B. Superfluidity 

C. Insulating behavior    D. High thermal conductivity 
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Key Words   

Thermodynamics: 

1. System: The portion of the universe under study. 

2. State Variables: Quantities that describe the state of a system (e.g., temperature, 

pressure, volume). 

3. Process: A change in the state of a system. 

4. First Law of Thermodynamics: Conservation of energy principle. 

5. Second Law of Thermodynamics: Describes the direction of natural processes (e.g., 

entropy increase). 

6. Entropy: Measure of disorder or randomness in a system. 

7. Equilibrium: State where no spontaneous change occurs. 

8. Heat: Energy transferred due to temperature difference. 

9. Work: Energy transferred due to a force acting through a distance. 

10. Enthalpy: Heat content of a system at constant pressure. 

Statistical Physics: 

1. Microstate: Complete description of a system at the microscopic level. 

2. Macrostate: Description of a system in terms of macroscopic variables (like 

temperature, pressure). 

3. Boltzmann Distribution: Distribution of particles in energy states at thermal 

equilibrium. 

4. Statistical Ensemble: Collection of all possible states of a system. 

5. Partition Function: Sum over all microstates weighted by their Boltzmann factors. 

6. Thermal Equilibrium: Condition where no net exchange of energy occurs between 

systems. 

7. Maxwell-Boltzmann Distribution: Distribution of velocities of particles in an ideal 

gas. 

8. Canonical Ensemble: Statistical ensemble where temperature, volume, and number 

of particles are fixed. 

9. Entropy in Statistical Physics: Measure of the number of microstates corresponding 

to a given macrostate. 

10. Equipartition Theorem: Energy is equally distributed among all degrees of freedom 

in thermal equilibrium. 
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